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ABSTRACT

Linear optimal control techniques are used as a synthesis tool to con-
ceptually design control systems for a large, highly flexible launch vehicle.
Quadratic performance indices are specified, some of which include a drift
minimum model, that yield a realizable optimal control law providing ade-
quate damping of two structural modes as well as satisfactory closed-loop
speed of response. These designs are shown to be relatively insensitive to
bending mode shapes and slopes. A theory of optimal control is developed
for systems possessing parameters whose values are known only on a sample
space and an optimal compensation network is designed for a launch vehicle
with an uncertain first bending mode slope. In addition, a theory is devel-
oped for a design procedure that limits the feedback gains from one or more
state variables. An experiment is described that obtains optimal solutions
for systems having one or more feedback gains arbitrarily set to preselected
values,

PRECEDING PAGE BLANK NOT FILMED.
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SECTION 1
INTRODUCTION AND SUMMARY

The design of control systems for launch vehicles must account for
the effects of structural flexibility and slosh. These effects present more
and more significant complications as launch vehicles increase in size and
slenderness. The approach of removing flexibility effects by filtering is
no longer sufficient, and active control of structural modes is becoming a
necessity. Thus, a broader demand is placed on the control system de-
signer.

The use of linear optimal control theory to meet this demand is the
subject of this report. The theory has been developed to the point where
it offers a systematic approach to complex problems of automatic control
system design. The aim of the study was to show that this theory can be
used as a practical and effective tool for the design of control systems for
flexible launch vehicles.

Linear optimal control theory provides a synthesis procedure for
linear systems which determines in any particular case a unique closed-
loop characteristic polynomial. A unique linear combination of the state
variables is fed back to the control inputs of the plant in accordance with ,
this determination. The theory recognizes the desirability of keeping errors
in system outputs small, while at the same time using amplitudes of control
motions that are no larger than necessary. This dual objective is expressed
in terms of minimizing a performance index, which includes weighted meas-
ures of the output motions and the control input motions. The approach can
be explained in terms of the problem of returning a system to equilibrium
from a disturbance state that is represented by a set of initial conditions.
The following quadratic performance index is used

2v =" [ ey v o)t

In this expression, ¢ is a vector representing the deviation of the system
state from the equilibrium state; &« is a vector representing the control
input quantities; and Q@ and ¥ are weighting matrices determining the rela-
tive importance attached to minimizing the variations of § and « respec-
tively. The variables y and « are related as follows. The linear constant
coefficient equations of motion of the vehicle are put in the form

v =Fr+ Gu

where % is a vector defining the state of the system, and F and & are ma-
trices. The output quantities of interest are determined by the equation

g:/‘/’b

The problem is to find &, , the time history of & which minimizes the per-
formance index. Then the theory shows that it is possible to generate &,
from linear combinations of the state variables X . This means that it is
possible to find a feedback matrix & such that optimal performance will be

obtained if we use the control law
w, = -Kx.
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A family of optimal solutions can be found, depending on the choices
of the weighting matrices @ and ©. A major advantage of this approach is
that the theory guarantees that all members of this family will be stable. It
is found also that the optimal system configurations generally have smooth,
well-behaved responses. The matter of choosing among the optimal solu-
tions is a subject of discussion in the body of this report.

The unique problems associated with the control of a large, flexible
launch vehicle make the optimal control approach attractive. To date, most
of the launch vehicle control system design techniques haveused filtering of
one kind or another, such as notch filters, to attenuate the bending mode sig-
nals in the feedback control loop. This procedure has the effect of gain- or
phase-stabilizing the poles associated with the bending modes. Although the
poles are not destabilized, the damping ratios of the bending mode are fre-
quently not much improved over their open-loop values. Wind or gust dis-
turbances can still excite the lightly damped modes of the structure.

As launch vehicles become larger and more slender, the principal
bending mode frequencies become lower, approaching the desired closed-
loop natural frequency of the poles originally associated with the rigid-body
motions. Under these circumstances, it is no longer practical to filter or
attenuate the bending modes. Instead, it becomes necessary to exert posi-
tive control over the bending motions of the vehicle.

Optimal control techniques yield a positive, direct design procedure
for controlling the bending motions of a large, flexible launch vehicle, while
at the same time accomplishing the task of controlling the overall rigid-body
motions of the vehicle. As noted above, a linear optimal control system is
guaranteed stable despite the complexities introduced by the structural
modes. More than the assurance of stability is gained by the use of linear
optimal control techniques. Inherent in the quadratic nature of the perfor-
mance index is the tendency to penalize large motions of the error and the
control, yet place little penalty on small errors or deviations. In his book,
S. S. L. Chang (Reference 4) demonstrates that for the same speed of re-
sponse, an optimal design requires lower amplitudes of control motion than
does a conventionally designed system.

In addition to these advantages, the demands of the quadratic perfor-
mance index require that closed-loop poles of the system approximate a
Butterworth filter distribution. The significance of this is that the optimal
designs provide substantial increases in the damping ratios of the bending
modes. The elastic motions of the vehicle are blended with the rigid-body
motions in such a way that the net response of the vehicle tends to be smooth
and well-behaved to either a command input or other excitations.

The application of linear optimal design techniques can be divided
into two parts:

1) The selection of the quadratic performance index.
It can be shown that the selection of the performance
index can be interpreted as a selection of the closed-
loop poles of the system in a logical, satisfactory manner.
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2) Determination of the feedback control law that will
yield the desired closed-loop pole configuration.

The optimal design theory approaches a dynamic control problem
in a reverse sense from that of conventional design procedures. In the op-
timal approach, the closed-loop poles are selected first and the control
configuration is then determined. In a conventional design procedure, the
closed-loop control configuration is first selected, and then the closed-loop
poles that result from this selection are obtained.

Summary

The work presented in this report was motivated by the knowledge that
usc of a quadratic performance index can satisfy many of the control system
criteria important to the elastic launch vehicle problem. In addition, it was
felt that the analysis tools developed in Reference 2 would enable a designer
to systematically specify a performance index that would yield a satisfactory
control system design.

This report describes two efficient techniques for optimal launch
vehicle control system analysis. But, as might be expected, the problems
associated with the design are primarily ones of synthesis, not analysis.

The control law must be expressed in terms of measurable quantities, with
feedback gain magnitudes that do not exceed limits set by previous experience
in launch vehicle control system designs. The problem is further complicat-
ed by the fact that the elastic properties of large launch vehicles are not
known to a high degree of accuracy, requiring a design that is insensitive

to parameter variations of the elastic characteristics of the vehicle.

The work described in this report systematically investigates the prob-
lem areas of elastic launch vehicle control system synthesis outlined above.
The following section briefly outlines linear optimal control theory in order
to acquaint the reader with the techniques that are subsequently used in later
sections of the report. More complete descriptions of the theory are given
in References 2, 3, and 4.

The third section describes a method for selecting quadratic perfor-
mance indices in a way that will yield satisfactory closed-loop dynamics.
The aim is to provide a suitably fast closed-loop system response and at
the same time increase the damping ratio of the bending modes. The control
law is synthesized in terms of measurable quantities.

In the fourth section, a drift minimum model is used in conjunction with
optimal control techniques to specify a control system that approximates the
drift minimum criterion in an error squared sense and within the allowable

~control motions of a single control variable. Direct control law synthesis

procedures are demonstrated and the optimal control is computed for several
sets of state variables. A brief investigation was made of the sensitivity of
the optimal system to variations of the bending mode slopes and shapes and
preliminary results indicated that the optimal system was remarkably insen-
sitive to changes in these parameters. The state vector was approximated
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in a least squared sense by three measurements of the system dynamics.
Finally, it is shown that higher order structural modes which are not
accounted for in the optimal control design may be destabilized. There are
several practical approaches to the solution of this problem.

These results led to a renewed interest in a study of sensitivity and
parameter variations, considered in Section 5 of this report. This section
describes the theory and practice of optimal design of systems subject to
parameters whose values are known only as random variables described on
a sample space. A method of optimal compensation is developed in the
frequency domain and several examples are used to expose the basic analyti-
cal difficulties which are evolved. The resultant theory is then applied to
the design of a compensating network required for a flexible booster when the
value for the slope of the first bending mode is uncertain.

Section 6 describes a study in which an attempt was made to develop
a design procedure that limits the feedback gains of one or more state vari-
ables yet still satisfies a quadratic performance index criterion. A theory
is developed for this difficult problem and the results show that a direct
application of the theory requires the solution of a complex set of nonlinear
algebraic equations. An analog computer program was run to obtain optimal
solutions experimentally for systems having one or more feedback gains
arbitrarily set to preselected values. The approach was to start with an
optimal solution obtained without gain constraints. Then those gains that
were beyond allowable limits were gradually reduced, while systematically
adjusting the other gains to keep the performance index as low as possible,
The cases tried indicated that this procedure is workable and that satisfactory
closed-loop system designs may be obtained with this approach.

The report ends with a section on conclusions and recommendations.
The linear optimal control theory is shown to be applicable to the design
of launch vehicle control systems. Practical problems of system design
were considered in the study, such as choice of sensors and their locations,
sensitivity to parameter uncertainty, and limitations on usable gains. In
the situations studied, these problems were found to be entirely manageable.
It was felt that designs of optimal control systems were obtained which met
practical requirements and which could be mechanized. A systematic ap-
proach was developed for dealing with uncertainties in the values of system
parameters. A method was also found for imposing constraints on some of
the feedback gains and finding optimal values for the system gains within these
constraints.

In summary, the study reported here has shown that linear optimal
control techniques can be used as effective tools in the design of control
systems for flexible launch vehicles.
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SECTION 2
A BRIEF OUTLINE OF
LINEAR OPTIMAL CONTROL THEORY

The optimal control problem can be briefly stated as follows: start-
ing with some initial condition of the plant, the problem is to find a time
history of control motion that forces the plant to dynamically respond in a
manner that minimizes an integral function of the control vector and the state
vector. If the plant is linear and the integral contains quadratic scalar func-
tions of the state variables and control variables, the control motion can be
generated as a linear combination of the state variables, and the result is a
linear feedback control law. This closed-loop system then responds optimally
to any initial condition of the plant. If the plant is describable by a set of
constant-coefficient linear differential equations of motion and the integral
is taken to infinity, the optimal feedback control law is composed of a set
of constant feedback gains from the state variables of the plant.

For this problem, the differential equations of motion are assumed
to have constant coefficients and so can be written as a matrix set of first-
order equations of the form

v =Fx+Qu y=Hux (2-1)
where % = the variables of the differential equations of motion
U = the control vector
Y = the output; a transformed set on the state whose

motions are to be minimized

F = an n x n matrix of constants describing the coupling
among state variables in the equations of motion

G = an n x p matrix of constants describing the effect
of control inputs on the equations of motion,

A control motion ¢, is to be found that minimizes the quadratic

performance index

o0
Z\/=[(9'Qy+ﬂ’k’u)df (2-2)

where @ =anr x r positive definite symmetric matrix whose elements
weight the contributions of each output in the integral

Q
1

a p x p positive definite symmetric matrix whose elements
weight the contributions of each control motion in the
integral.

There are several ways to obtain the optimal control motion ¢, that
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minimizes the performance index. In the time domain, the calculus of vari-
ations may be used to obtain a solution (see References 11 and 2). If this
approach is taken, the Euler-Lagrange partial differential equations of mo-
tion must be satisfied.

X d (9%

—_ - = 0

Iy dt ag)
2% _d (%) =0

du dt\3da (2-3)

where & is the Lagrangian
X = Z’ (¢'dy +u'RPu)+ 2" (% +Fy+Gu)

and A is an undetermined vector called the adjoint state vector or the
costate.

The Euler-Lagrange equations, together with the original equa-
tions of motion are

v-Fr-Gu =0 (a)
Ru,+G'2 =0 (b) (2-4)
HoHy + 4 +F'2 =0 (c)

From Equation 2-4b the optimal control law is «, = -r'a".

If the substitution 4= P, 4 =P% is made, Equations 2-4 can be
reduced to the single quadratic Riccati equation in P which was described
by Kalman (Reference 3) and others.

O=PF+FP-PGgRIC'P+H'a H (2-5)

The feedback gains are determined from the positive definite symmetric
solution of the Riccati equation.

Now consider the Laplace transform of Equations 2-4:

Is-F -G 0 v (s) ] (o)
0 R G’ &, (5) = 0 (2-6)
H'gH 0 -Is-F! A(s) -2.(0)

The determinant of Equation 2-6, when set to zero, yields an expres-
sion for the closed-loop roots of the optimal system with state variable % and
"adjoint'' system with adjoint variable 2 . The roots of this characteristic
equation can be determined from the root square locus expression

lI+ 9"6”[-[5-F"]-,//'Q//[Is-/:‘]—la! =0 (2-7)
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which can be derived from the determinant of Equation 2-6 (References 2
and 5), or from a frequency domain formulation of the problem (Refer-
ences 2, 9). H[Is~ ] G is a matrix of transfer functlons ‘/u (s) relating
the outputs of the system to the inputs and C"[—Is F']"H’ is the transpose of
the transfer function matrix with s replaced by -s.

The linear optimal control problem can also be solved entirely in
the frequency domain. Parseval's theorem is applied to the performance
index, Equation 2-2: j oo

1
2V = 17 / (y,Qy +u,Ru)ds (2-8)

-jo

where

4=y(s) =H [:Is-F]'/Qu,L /—/[[5-/:‘]'/15(0)

= Wu + Bv(o)
Y% = (_«!,(‘ s) = u, Wy +1(0) By
U, = &'(-3)

W, = QIs-F'17'’

It is desired to take a variation to find the control that minimizes
2-8. To do this, substitute for § and y, in Equation 2-8 and let

4= U, + du,

It will be found that the requirement for minimization (References
2 and 9) is that joo

1
I - T u*[W¥QWwd+W¥93m(o)+72u6:]d5 =0

~J
or

[@4-[/\/*@\/\/]4&0 + W, @ Bx () = 3.(s) (2-9)

where sz (s) must be analytic in the left-half plane.* Equation 2-9 is a
matrix equation of the Wiener-Hopf type that must be satisfied to obtain the
optimal control vector. The solution to Equation 2-9 is given by

! 210
h
where Y\/* :[Qq.w*Q\/\/]
-1
and \'/x [Ws‘ @B« (0)1 has been decomposed by a partial fraction expan-

sion into the sum
v W, @8] = T [T (2-1)

*Appendix B describes this requirement when the open-loop plant is non-
minimum phase.
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It can be seen that
R+weqw] = 0 (2-12)
yields the same expression for the root square locus as Equation 2-7.

A complete method of analysis and synthesis is therefore obtained.
The selection of a performance index that yields a satisfactory closed-loop
response is possible through the use of the root square locus expression.
The feedback control law can be obtained by solving the Riccati equation
or by satisfying the matrix Wiener-Hopf equation. References 2 and 5 de-
scribe the solution through the use of the Riccati equation, while References
2 and 9 describe the proper technique for solving linear optimal control
problems using the matrix Wiener-Hopf equation.

When the plant has only one control input, the synthesis problem can
be solved in a direct, straightforward manner. The plant is described by
the set of first-order linear equations of motion

¥ =Fx +Gu
and the optimal feedback control law is of the form
u, = - Ky (2-13)
The equations of motion of the optimal regulator are given by
%= (F- GK)x (2-14)
whose closed-loop characteristic polynomial is
Afs) =|Is-F+ak] (2-15)

The closed-loop characteristic polynomial can be reconstructed for any

values of weighting in the performance index from the root square locus

plot. Equating powers of s of the characteristic polynomial obtained from the
root square locus plot to the scalar expression of Equation 2-15 yields a

linear algebraic set of equations in the k; feedback gains. This set of linear
algebraic equations can be simply solved by machine in a straightforward
manner., Examples of optimal analysis using the root square locus plot and
synthesis using the method described above are given in the next two sec-

tions. In addition to the examples in this report, Reference 2 contains num-
erous examples designed to acquaint the engineer with the required mathematics.




IH-2089-F-1

SECTION 3
SELECTION OF THE PERFORMANCE INDEX

Introduction

The selection of the parameters of the performance index is not
automatic. The variable or variables that are included in the performance
index will have an optimal response that tends towards the response of a
Butterworth filter as these variables are weighted more and more heavily
with respect to the control. The implications of this statement are signifi-
cant. It means, for instance, that if the performance index contained only
a bending mode variable, say %, , then ¥, would tend to respond as a
second-order system with a damping ratio of approximately & =0.7. The
responses of the other variables, however, are almost certain to be unaccept-
able. The approach, then, will be to include a measure of both a rigid-body
variable and bending mode variables in the performance index. This approach
will permit a rapid and stable response of the rigid-body contribution to the
dynamics and acceptable damping of the bending mode contribution to the
closed-loop response.

One Bending Mode

Although it is clear that a measure of both the rigid-body mode and
the body bending modes will be included in the performance index descrip-
tion, the mix of the two variables should be investigated. Thus the attitude
angle and first bending mode variable may be included in the performance
index in the following ways: o

o= g /[fz(% cty) " At o (3-1)
or 2
2V o= g JT0.85 0,2 r ot (3-2)

The analysis of the first performance index, Equation 3-1, is a rela-
tively simple matter, involving only a single root square locus plot with
the parameter ¢/ 7 . A preliminary analysis of a conventional root locus
plot of the function

@ ,
% = (s)+—>—z—(s)=0 (3-3)
% e

will yield the zeros of the function that will appear in the root square locus
plot. In general, the roots of Equation 3-3 are chosen to obtain an adequate
separation between the poles and zeros of the function of Equation 3-3. This
will guarantee that adequate damping of the bending mode will be achievable
for some value of the performance index parameter q/f‘.

The analysis of the performance index of Equation 3-2 involves two

root square locus plots instead of one conventional root locus plot and one
root square locus. As before, the first locus serves to define the zeros

9
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for the second root square locus plot. The root square locus expression
for the performance index of Equation 3-2 is given by

.’71
& (5) —L (-9)
143 28 () % (s) |1+ 22 ﬂ" ui: =0 (3-4)
r 166 ﬂc 4, *—(S) ¢B (—-S)
L Be " Pe

where the term in brackets

7,
()—— )
o5 BV =0 (3-5)
g ¢’3<>¢""'<-)
Be Be

defines the zeros, or terminal points for the locus of the closed-loop poles
of the optimal system. Because of the quadratic nature of Equation 3-5,
the locus of the zeros of Equation 3-5 will generally have a higher damping
ratio for any value of the parameter g, /¢, than will the zeros defined by
Equation 3-3 for any value of the parameter k.

To illustrate this process of the selection of the terminal points of
the root square locus process, it was decided to use the performance index
of Equation 3-1 for the analysis of an optimal system that contains only one
bending mode and the performance index of Equation 3-2 for the two bending
mode analysis and synthesis problem of this section of the report.

Single Bending Mode Analysis

The elastic booster equations of motion including a single bending
mode are (see Appendix A):

&5,3 - 0733 + 0.4543=0
~@g +.0405 B+ i+ 01067 @ + 02118 =

‘_ (3-6)
-S455a 4 [, +. 0232y » 537y, - 15856=0
B +1798 = 17.98,
or, in matrix form
R 0 1.0 0 0 0 0 @ | [ o]
Be 0 0 0733 0 0 -45 @, 0
a -.0405 1.0 -.0107 0 o -0 x 0
= + ﬂ
. C
7 0 0 0 o 1.0 0 n 0
1 ! (3-7)
7, 0 0O 5453 -537 -.0232 1583 1, 0
0 0 0 0 0 -17.9 17.9
_’6J L A ﬁJ L
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The design will involve the analysis of the performance index

= m” /[9(7 'i@g) R ]df (3-8)

It has been shown in Section 2 that the closed-loop roots of the optimal
system and adjoint are given by the root square locus expression

I+ E”é"[—Is-F']—/"/'QH[Is—F] A (3-9)

where, for this example

- - LA
H=[% 0 o 1 0 o] @ =[q] > —[rJ
-1 (z ' -1, y’ ¢E
Hlrs-Fl ¢ = [—ﬁ—c (5)+ £ {_6;(5{] G'-1s-F' 'H = —ﬁz(-s)ﬂézf—s)
@

A preliminary root locus plot of 73—’ (s)+ % ﬂ; (s) = 0 was performed to
[A

select a suitable value for k. Since this locus defines the zeros of the root

square locus plot, the selection of k was made on the basis that the roots of the

closed-loop optimal system would be such to yield a sufficiently rapid booster

response and increase the damping ratio of the bending mode. A value of

k = 30 produced the desired result. This locus is not shown because its con-

struction is straightforward and relatively simple.

Substituting the transfer functions from Appendix A,

7 @,
P(s) = ;’ (s) + 3055(5)

(o

s s S s 2 (.00%) s \2
~ 9"3(" .0408)(”‘,4935)(7'.454)*30('2"4) 7*.0/4/) I+ =55t 2-32)
s s s s 2(.005) 5 \2
(" ,0478)(/_ .242){“ .294)(”/79) [’* 2.317 S*(z,sw) ]
55.02 |1+ ° )(/- s)// 5)
) : ons)\' "z 29/l 222 5
( S S S s ) I:’ 2(.005) s 2:] (3-10)
".04175)".z4«2)(’+.z94)(“/7.9 " mr 2.377)

Substituting P(s) and P(-s) into the root square locus expression (Equation-
3-9) yields

g 3027 (/+0ﬂ5)(/+229)(7 2.2 ) (3-11)

0=7+= 5 s L 20009) (s)z
(’I.owa)(’i.zn)(" 294 /79 2.317 2317

11
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One half of the solutions to Equation 3-11 are plotted in Figure 3. 1.
The stable, optimal solutions are shown and the unstable, adjoint system so-
lutions are omitted for simplicity and clarity. The parameter of the locus is
q/r, the ratio of the weighting of the state variables and the control variables
in the performance index. The locus then shows the closed-loop poles of the
optimal system as a function of the ratio of the weighting of the two parts of
the performance index. For purposes of illustration, a value of q/r = 0.01
was chosen as a candidate for a weighting of the performance index factors
yielding satisfactory closed-loop optimal system dynamic characteristics.

From the root square locus plot, a value of q/r = 0.01 yields the
closed-loop characteristic polynomial

A(s) = (s+179)(s+.0117) [ 5%+ 2(.81)(1.13) s + (113)% ][ s % 2(12)(2.42)5+(242)%] (3_12)

Equation 3-12 shows that the damping ratio of the first bending mode has
been increased from an open-loop value of ¥ =, 005 to J = .12 in the closed-
loop design. At the same time, the rigid-body contribution to the response
contains a predominant pair of poles at &, = 1.13 rad/sec, J =0.81. The at-
titude response of the vehicle will therefore be smooth, with little overshoot.

The optimal control law that yields the closed-loop characteristic equa-
tion 3-11 and satisfies the performance index

2V=/;Z” /[0.07(30(252,«74)%/352]0/1‘ (3-13)
]

can be obtained by solving the Wiener-Hopf equation, 2-9, or the matrix Ric-
cati equation, 2~5, or by a direct method that is described in the next section.
For this problem, the feedback control law is found to be

B, = 300 @y +4.98 G, + $45-.0827y - 02317 01558  (3-14)

The magnitudes of the feedback gains are generally within the guidelines
outlined by the Marshall Space Flight Center of NASA, and can be mechanized
in terms of measurable quantities. However, it is clear that the quantities con-
tained in the optimal control law of Equation 3-14 do not generally represent
measurable quantities. It would be more realistic to express the feedback con-
trol law in terms of the outputs of sensors located on the vehicle. Because
this particular problem, which includes only one bending mode, has been pre-
sented for illustrative purposes only, the feedback control law mechanization
aspects are not presented. The remainder of Section 3 and all of Section 4,
which includes a description of the vehicle containing two bending modes, does
consider control law synthesis problems in detail.

Selection of Performance Index for Two Bending Modes

The addition of a second bending mode to the description of the launch
vehicle adds complexity to the problem because now a measure of the second

12
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mode dynamics must be included in the performance index. The equations of
motion for this problem are (see Appendix A)

e /.7 ]
@, o 1 0 o 0o o° 0 0 B 0
3, o 0 .0733 0 0 0 0 -.45 Be 0
a -.0405 1 -.0107 0 0 0 o -of o 0
7, 0 o0 o0 © ! 0 0 0 1, 0
= * 2
7, O 0 545 -537 -.0563 O 0  15.83 7, 0
3-15
i,| [0 o o o o 0 {0 n, o | 3-13)
1 6 0 2% O 0 -3.8 -.0664 22.77 7, 0
' 0o o0 0 o0 0 0 0 -179 179
Al LA) U

A performance index is chosen of the form

V- ’ﬁ”:/(%@f* ?37,2*?2 )222+ r‘/ﬁcz)o’z‘ (3-16)
0

requiring the selection of three weighting parameters of the performance
index. The analysis of this problem can be carried out using the root square
locus expression

'I+ g*’a’[—fs-/:’]“’%/’@f/[zy/—“]_’G’I =0 (3-17)
where for this problem
f 000 0 0 0O (g, o0 0]
H=l0o oo f 0o o0 0 o @ =,0 g, O Rl =L
0o 00 o0 0 1 00 0 o g, (3-18)

The expression H [Is— F]'6 is a column matrix of transfer func-
tions of those variables appearing in the performance index.

?(25_@(5)7
(4]
H[IS~FJ-lG’ = _’;%(S) and G'EIS-F’ RTLa l:%(-s) -g—’-(-S) —)Zz-(-s):l
c ¢
7,
e (3-19)
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Substituting into Equation 3-17,

gg (s)
9, 0 0 c
4 = _7’: l:_%(_s) % g _'Zz_(_s):l 0 g, 0 %(s) (3-20)
(] (gc () 0 0 g, )Z"—
—z(s)
e
or
@
0= { + & _f(s) gﬂ(_s) +& _@(5) _)Zz_(.s) + _?_3. ﬁ(s)_’z_/ (—s) (3_21)
roe e r B P rofe [
Equation 3-21 can be written
& E(s)ﬁ (-5) ﬁ(s) ﬁ(—s‘!
0=1+3 o ey, do Lo P o2 Lo : (3-22)
r P Be 9, _95(5)_?_2(-5) % 7, 72
3, Be E(S) E(-S)

Equation 3-21 shows that the closed-loop poles of the optimal system
and its adjoint are a function of three parameters q,/r‘, qz/r', and ¢,/7.
Equation 3-22 shows that three separate root square loci are involved in the
analysis of the closed-loop system and the selection of the values of q’/f,

9,/ , and g, /7.

Defining A o oy -k’ NNy, _erf
ﬁc ﬂa v/ DD
N, N,
iC3 (s) K2 (-s) = /4?22 T2 Tz
DD
o Ae (3-23)
@, & 2z NgN,
Rs) B(-s) = y¢ _ed
Pe e DD
then the first of the three root square loci can be written
2 —
1 73 K’Zf N)Zf N'lr (3-24)
O=1+ — 3 — -
% Id’zz N”z N”z

Substituting the numerical values for the booster transfer functions, Equa-

tion 3-24 becomes
s \[,, 2(00s) s )2]
14 S+
499/ 5639 5.639

. s s
35 (9.18)° (,—.0408)(1I .454)(’

(
(1.17)* s s\ ., _5 , 2(o03) ( s )z
9 (/z .04,2)(11 '3,9)(/_ '369) [f_. 257 5t 73

53

3-25)

15
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One half of the root square locus of Equation 3-25 is plotted in Figure
3.2. The stable, optimal system part of the locus is shown, and the unstable,
adjoint part is omitted. The locus in itself is difficult to interpret precisely,
but a few general comments can be made. This locus and the one to follow
will define the zeros, or terminal locations for the closed-loop poles of the
optimal system. Therefore, in general it can be said that the aim of the
locus of Figure 3.2 will be to select roots that have an adequate damping
ratio. This will guarantee that both the first and second bending modes will
have adequate damping ratios in the closed-loop design. The locus does indi-
cate that if good first mode damping is to be achieved, 45 /42 should not have
too small a value, while too large a value for ¢, /4, will result in an insuffi-
cient second mode damping ratio. A selection of qz/qz in the range
.2< 9/9, < 2 will likely serve the purpose of obtaining good damping ratios
for both the first and second modes.

The value 95/¢9, = 0.5 was chosen as a logical value, yielding a max-
imum damping ratio for the roots of Figure 3.2. With a value for g5 /4,
chosen, the second root square locus expression to be formulated is

Z q 4
ky + 23 K, ] Roots { Fi 3.2 with % = .05)
0=1, 22 [”z % n ) (Roots from eare - ¥ 2 (3-26)
9, Ky Ng Ng

Substituting the appropriate dynamic quantities from the transfer func-
tions and from the first root square locus expression, the second root square
locus expression becomes

[“ 2(.39) . +/ s )Z:I [, 2(.98) s+( 5)2}
9 ? d v
0= 140957 22 3.92 \3.92 47 .47

% (li i) 2(.005) ( 5)2 2(.005) ( s )2 (3-27)
o) | 1t 237 5t T I+ 239 ° 15035

As in Figure 3.2, one half of the root square locus expression of Equa-
tion 3-27 is plotted in Figure 3.3. This locus defines the end points or zeros
of the root square locus for the closed-loop poles of the optimal system. An
inspection of the plot shows that a value of g, /4/ = 4 allows for good damping
of both the first and second bending modes.

The third root square locus expression can then be formulated as
2 qz 2 QJ 2

9, |}/¢ * q, L/”z * q, L/”y:l (Roots from Figure 3.3 with qz/?, = 4)

r

O=1+

DD (3-28)

where D is the open-loop characteristic polynomial of the elastic vehicle
and D 1is the open-loop characteristic polynomial with s replaced by -s.

Substituting the proper expressions from the second root square locus
plot and from the transfer functions yields

16
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s ) 2(.48) ( s \2 2(,38) s \z (3-29)
+ + S + t s
9, \!*ezs) | *Za7 *t7e7r) ||!F 56 e
r s s s s 2(.00s) s \2 2({005) s \2
2 —— 12 ——|I1t —|Ift 12 5+ S S+
179 .294 .242]\" .0418 2.317 2.317, 5.4 3.64
The root square locus plot of the poles of the optimum system is shown
in Figure 3.4. As in the previous plots, only the stable, optimal half of the
locus is shown and the adjoint system is omitted. The locus shows that the
objective of the design procedure has been achieved. The open-loop poles of
the booster originating from the rigid-body dynamics become stable, well
damped and increase in natural frequency as the parameter of the locus q,/f"
is increased. In addition, the damping ratios of the poles originally associated
with the bending modes increase significantly. The net result is a logical de-

sign procedure that yields a desirable and satisfactory pattern of closed-loop
poles.

Optimal Control Law

It is a relatively simple matter, once the root square locus plot has
been obtained, to calculate the optimal control law that will yield the closed-
loop polynomial selected from the root locus plot. The original open-loop
equations of motion are written

v =Fx + Gu

and it is desired to find the optimal feedback control law
u, = ~Kx

so that the closed-loop optimal system becomes
v = (F-GK)x

The closed-loop characteristic equation is given by

|Is-F+GK|=0 (3-30)

Equating the determinant of Equation 3-30 to the closed-loop polynomial ob-
tained from the root square locus plot yields a set of linear algebraic equa-
tions from which the feedback gains can be easily computed.

As an example, a value of ¢, /* = 50 was chosen to yield a closed-
loop system whose speed of response would be satisfactory. From the root

square locus plot of the poles of the closed-loop optimal system (Figure 3. 4),
the closed-loop polynomial is given by

A(s)=(5+.0825)(5+1791)[s%+ 2(.76)(/.za)5+(/.28}z][SZ+Z(./7)(Z.4)S+(2'4)21 [s%2(0s)(5.65)s+ (565)%] (3-31)
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For this problem, the determinant A(s) = |Is-F +GK]or

5 -1.0 0 0 0 o o 0

0 5 -,0733 0 o o) o 45
0405 -10  s+.0107 0 0 0 ) L0211

0 0 o 5 -10 0 0 0

Afs)=

0 0 -5.453 5.37 $+.0232 0 9] -1583

0 0 0 0 o s -1.0 0

0 0 -2.36 o o) 3.8 s+0%64  -22.77
1798, 17.9%, 17.9t, 119k, 179%,; 179%, 179%, s5+179+17.9%,

(3-32)

Equating powers of s of Equations 3-31 and 3-32 and solving for K yields

I = [- 9.104, - 5.993, 4.467, .1020, .03163, .035/3, .02264, ./860] (3-33)

and the optimum control law becomes

) ) ) (3-34)
(B = +9.104 B+ 5.993 - 4467 - 1020y, - 03163, -. 03513y, ~. 0226y, -.186 G

The control law of Equation 3-34 is not realizable because the variables
of Equation 3-34 are not directly measurable. It is necessary to define mea-
surable quantities and express the control law in terms of these quantities.
For purposes of illustration, the following set of state variables was chosen

14 bt . .
=10y ,8, ,a 2 g, , a

3 [ ’Z’ ] %, 3 31‘, 3 942 b] }ﬂéz ’ 445 b 3455 7/6 (3—35)

where ¢"4’ s @x‘. , and a%%‘ represent the quantities measured by a
2

position gyro, a rate gyro and an accelerometer at station %, on the launch
vehicle body. Choosing the body stations %, = 41.5 meters, %; = 86.0
meters, and Xy = 122.5 meters, the transformation 3 = Ax becomes,

for this example
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(@, [to o o -o028 0 -.0085 0 o | [ ¢&]
) o to 0 0 -.028 0 -.0085 0 Be
L]
g, 0 0 2105 19037 -.00905 (6786  .0313  -T.881 @
f
3, 0 0 o 0  .02% 0 060 0 1,
z (3-36)
ay, 0 O 7441 2453 .0l624 -3538  -05866 3550 7,
2
@y, | |0 o 0 0 1230 0 - 143 0 Y,
g, 0 0 2337 -1432 -.0473 -8.52¢ -.0186!/  14.287 7,
3
| 8 6 0 o0 0 0 0 0 10 i g

and the control law becomes

/60 = - /6’6 = = /(A-,?
fr = 91048, +4.226 By, - 420205 + 13170, - 1170y +.453 By -.09690, ~.14933
7

y
z g 3 (3-37)
sensors located sensors located sensors located
at station U4i.5m at station 86.0m at station 122.5m

The control law of Equation 3-37 represents a solution to the two
bending mode problem. By locating three instrument packages at three dif-
ferent locations along the body of the launch vehicle, every state variable of
the system is measurable. The feedback gains are low enough that the con-
trol law may be mechanized without difficulty, resulting in a design that may
be practical for a launch vehicle whose significant elastic properties can be
described by two bending modes.

The transient responses of the optimal system, defined by the control
law of either Equation 3-34 or 3-37, are shown in Figures 3.5 through 3.7.
The characteristic polynomial of the closed-loop system is given by Equation
3-31, which indicates that the first mode damping has been increased from
g = .005 open loop to approximately & = .17 for the closed-loop design,
while the second mode damping ratio has been increased by a factor of 10,
from ¥ = .005 to approximately Z = .05. The transient responses to a unit
step command input clearly show the increases in the first and second mode
damping ratios. In addition, the rigid-body contribution to the closed-loop
response, dominated by a pair of poles located at w, = 1.28 rad/sec and
= 0,76, contribute to the smoothness of the vehicle's response. The con-
trol motions of Figure 3.7 show that the gimbal deflections are reasonable
and well within the frequency capability of the actuator.

22




IH-2089-F-1

0.4}

e Station X = yl.5m

0.2

a
3y,

(meters/secz) 0

0.2 \/ \l 1 V \/

e e S s ST s

PRI B (5
?%z : ;

(meters/sec?) Ob\

7 8 9 10

0. Y fomin ------- \ .........

3 0.2 e l
(meters/sec?) '\ """"" """"" l \ /\\ :

Figure 3.5 Normal Acceleration Response at
Three Different Body Stations

23



IH-2089-F-1

TIME (SEC)

Figure 3.6 Attitude Response at Center of Gravity

(deg)

: : : “ 3 : : : : : H :
-0.5 e e e e e e, i TIME (SEC) oo JORR SO

Figure 3.7 The Optimal Control Motion
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SECTION 4
MODEL ORIENTED DESIGN STUDY

Introduction

This section describes the use of a model in the linear optimal con-
trol design procedure. The model defines a set of equations that describe
the motions of an ideal launch vehicle. Optimal control is then used to se-
lect a feedback control system configuration that minimizes the differences
between the motions of the launch vehicle and the model in an integral error
squared sense and control squared sense. Minimizing the motions in this
manner guarantees a stable solution and also yields an error response that
is smooth and well hehaved, resulting in control motions that do not require
violent deflections if the model is smooth. A well behaved model is desirable
for the launch vehicle, so it is expected that the control motion will be
smooth for this application.

The following theoretical development and examples show that the use
of a model is a logical design aid, resulting in a more direct and simple anal-
ysis procedure than the procedure presented in Section 3. The optimal aspect
of the design tends to satisfy some of the design objectives, such as stability
and smoothness of response, while the model aspect satisfies other require-
ments such as drift minimum characteristics and speed of response of the
closed-loop system.

A model of a desirably responding system is formulated as (Ref. 3)

7=L7 (4-1)

where [ defines the matrix of constants describing the coupling among vari-
ables in the equations of motion of the model.

A control motion «, 1is to be found that minimizes the quadratic
performance index

oo
. . 4-2
vAY =/[(g—bg)’@(g—bg +u’/«?u]a’t (4-2)
where o
@ = an rxr positive definite symmetric matrix whose elements
weight the contribution of each error in the performance index.
% = a pxp positive definite symmetric matrix whose elements weight

the contribution of each control motion in the integral.

The error portion of the performance index, the (gy-4y) term, is a
vector that vanishes when the closed-loop optimal system behaves exactly
like the model. In general, the feedback cannot exactly match the booster
to the model for several reasons. In general, the L and F/ matrices are
of different dimension, and a limited number of controllers is available for
feedback purposes.
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Although it will be impossible to exactly match the booster and the
model, the error can be made as small as practical by weighting the error
portion of the performance index heavily with respect to the control. It will
be shown that approximating the model response through the use of a qua-

dratic performance index results in not only an optimal, but an acceptable
feedback control system design.

The problem of minimizing Equation 4-2 subject to the differential
constraint of the equations of motion is again a straightforward problem in
the calculus of variations. The Lagrangian of this problem can be defined
as:

X =F(4-L9)0G-Ly)swRu]e 2/ (- i+ Fios Gu)
=4 [VHGH- 2 H'GLH- 2" HLIQH %

(4-3)
+ 2L H'QLHY + u’l?u_] + A4+ Frs Gu)

where 4 1is an n x 1 vector called the adjoint state vector or the costate.

The minimization of the quadratic performance index requires that
the Euler-Lagrange equations be satisfied

X i(aac)zo oX d(aa()zo

Sy " dt 94 Su T dtl o (4-4)

Using the Lagrangian of Equation 4-3, the Euler-Lagrange equations

are .
MrFL-HQHE+ H'QLHA -H'L'QHE +H'L"QLHY = 0O )
a
(4-5)

Ru,+C'%=0 ()

The optimal control law from Equation 4-5b is ¢, = -R7@'4 and
the optimal closed-loop system becomes

N -Fu+GRIG'A =0 (4-6)

The exact solution for 2 as a function of % has been obtained
by Kalman (Ref. 3) and Tyler (Ref 6). For the case of the single control
input the feedback control law can be more quickly and easily obtained by
developing a root square locus expression, which, when plotted, spectral
factors the poles of the closed-loop optimal and adjoint systems. The closed-
loop characteristic polynomial of the optimal system can then be recon-
structed from the root square locus plot, and the feedback gains are then
easily obtained. The root square locus expression is developed below.

In Laplace transform form, Equations 4-5a and 4-6 become

[Is-F) GR1G" | |x(s) % (0)

_#r[;Is—L’]Q[Is-L]H l:-Is~F’:| A(s) = _7],(0)+,L/’Q/-/[Is %(0) + 92(0)]
-H'[QL +L'@) Hx (o)
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The determinant of the left hand side of Equation 4-7, when set to zero, de-
fines the characteristic equation of the optimal system and its adjoint. It can
be shown (Ref. 2) that this determinant may be written

[75-F] GrR'a’ 1
- RlIs-F“-Is-F'I’LR"G’ [1s-F T 'W'Es-27] @[ 10 JHL1s-F) G’= 0
-y'|-Is. 00 Q[I LIH |-Is-F'
[ ] s ] [ ] ~ (4‘8)
if [IS-F] and[-Is—F'] are square, non-singular matrices. But the determi-
nants [Is-F| and|-Is- F’] are the characteristic polynomials of the open-
loop system and its adjoint, which vanish only at their root locations. The
closed-loop roots of the optimal system and adjoint are therefore obtained
from the expression

1+t -1s-F "1 [-1s-1")a [1s-L1H[1s-F] g |=0 (4-9)

The term /—-/[IS-/::I -,d is a matrix of transfer functions y%‘j (s) relating
the outputs of the system to the inputs and G'[—]_'s-f-"] T H’ " is the trans-
pose of the transfer function matrix with s replaced by -s. The locus of
roots obtained from Equation 4-9 defines a root square locus expression
(Ref. 2 and 5). Using this expression one can investigate the closed-loop
characteristic polynomial of the optimal system as a function of the weight-
ing parameters of the performance index of Equation 4-2. Because the root
square locus is a p x p expression, while the original determinant of Equa-
tion 4-8 is of dimension 2n x 2n, a considerable simplification has been made
for purposes of analysis. In particular, because the booster has a single
controller (the gimballed rocket engines), the root square locus reduces to a
scalar expression.

Basic Limitations of Modeling

The use of a "mathematical model' to define a control system cri-
terion has limitations and clearly cannot be used without some conception
of the implications of its use. In general, it is mathematically and physi-
cally impossible to exactly match a system to a model. Generally speaking,
there are two reasons for this:

1. The mathematical model is usually of an order or dimension that
differs from that of the actual system and often differs from the
mathematical description of the actual system.

2. In general, the number of controllers does not equal the number
of degrees of freedom of motion of the system. It is basic
that the number of controllers must equal the number of degrees
of freedom the plant possesses to have complete control of the
dynamics of the plant,

To illustrate the two principles stated above, consider the following
simple examples:

1. Assume a second-order, single controller plant is describable by the

first-order set of equations .
X = Fy+Gu
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or
%y 'pﬂ 'pyz ¥y 91
) * “ (4-10)
L7) ’ezf 22 Y 9,
Assume that it is desirable to use feedback control of the form
U =-kx (4-11)
in an attempt to match the plant to a model described by the matrix
lﬂ ‘lrz
L = (4-12)
Ly Ly
Substituting Equation 4-11 into 4-10 yields, in the closed loop,
% o 9, %, 9, %, % (4-13)

""z £ 'Pzz 9, %, 9. %, Xz

or

v = [C-GH]%

It is clear, by an examination of 4-13 that only one row of L, either
[l’/,, jzz] or [ £,, £, ] can be matched by the two feedback gains k

and k2' !
The best that one can do is to specify L and F as companion matrices,
i.e.,
0 1 0 1
L = F =
2 z
Wy =28,y @y, - Wy -2%, 9,

Then feedback control can be used to match the natural frequency
and damping ratio of the plant and the model. This approach has been incor-
porated into the design philosophy of the flexible launch vehicle.
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2. Assume that the plant is describable by the third-order set of equations

2, LT U %, 9,
%, | = 0 Fa i Yol v | 9| 4
163 4‘31 4'32 'Pu %3 95

and the desired '""model' is described by the same 2 x 2 matrix

'lﬂ 'ZIZ

‘ZZl ‘422

It can then be deduced, using the principles from example | that it
is possible to match only one row of any 2 x 2 submatrix of F to L. If F and
L are specified as companion matrices, then the two poles of the model may
be exactly obtained and the third pole "arbitrarily" selected.

The approach to flexible launch vehicle control system design in-
corporates both of the principles described above with one additional, and
perhaps important, factor. Referring to example 2, one may ask the follow-
ing:

Instead of exactly matching two of the model poles and "arbitrarily"
selecting the third pole, what distribution of the three (closed-loop)
system poles approximates the two model poles in a minimum
quadratic '""error'" squared and '"control" squared sense?

The reason for specifying the closed-loop poles in this sense is logi-
cal. It eliminates the arbitrariness of the selection of the third pole. For
if the third pole were too '"large'. the control motions would be rapid and
high feedback gains would probably be required. If the third pole were chosen
too '"small'', it would contribute significantly to the closed-loop system re-
sponse. Therefore, the quadratic type of design used in this report is a com-
promise design.

If, in the flexible launch vehicle design, the exact drift minimum prop-
erty must be obtained, it would be a simple matter to precalculate the feed-
back control required to yield a pole at the origin, then select the remaining
poles in a minimum quadratic "error' squared plus '""control" squared sense.
The penalty incurred is that greater or sharper control motions would be
required than for the case when all the plant poles were chosen to satisfy
the quadratic performance index criterion. Perhaps the penalty is significant;
more likely the differences would be negligible.

Elastic Booster Application

Because the booster has a single control element, feedback control
can alter only the characteristic polynomial of the vehicle and not the zeros
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of the transfer functions (unless other dynamic elements are deliberately added
to the system). Therefore, the optimal control problem may be formulated
to express the error in terms of a difference between the characteristic poly-
nomial of the elastic booster and the characteristic polynomial of the model.
To do this, assume that the F matrix associated with the booster is of dimen-

sion n x n and L is dimension £ x £, Define H of dimension £ x n
[k, 0 0
0 h,zz
0 - , (4-14)
H = .
| 0 0 0 ’ku 0 0 ]
where h,":h,22=. RPN =h£@ =
The matrices F, L. and G are written
- - S —_— _
o 1 0 . ..0 0 1 0...0 0 |
0 0 g 0 f 0
F-— = ° L = G =
(4-15)
) ' I 0 )
0 o f 0 ! 0
-b‘ 'bz . e . 'b”_’ _bﬂ 'd, —dZ . . .‘dl_, ‘d‘ L1
where ” p? -2
§ +b,s” +by, s "+ .. . +b,s +b, = |Is-F|
(2)
(4-16)

5. d, s'e-,+d1_, st2, Ly dys +d; = IIS~L’ (b)

The Q matrix is defined as Q = ¢I , where I is an £ x £ identity
matrix and % = 7 , a scalar.

When the quantities F, G, H, L, Q. and R are substituted into the
root square locus expression of Equation 4-9 one obtains

_ _ 9 |Is-L|I-Is-L") (4-17)

r |Is-Fl|-Is-F'|
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The numerator of Equation 4-17 contains the characteristic polynomial
of the model and adjoint while the denominator of Equation 4-17 contains the
characteristic polynomial of the booster and its adjoint. The locus of roots
of Equation 4-17 will therefore originate at the launch vehicle open-loop
poles and terminate at the model singularities. The parameter of the locus
is proportional to q/r, the ratio of the weighting of the error to the control
in the performance index. The net result of the use of Equation 4-17 is that
the performance index has been formulated to minimize the difference be-
tween the characteristic polynomial of the booster and the model in the inte-
gral error and control squared sense.

Equations of Motion of the Elastic Booster

The equations of motion are taken from NASA "Model Vehicle No. 2"
(Appendix A) which is representative of the post-Saturn vehicles under con-
sideration by NASA. Assuming complete vehicle symmetry, the equations
of motion in the x- 4 plane at t = 78 sec after launch (max q) are given below
with certain simplifications. Two normal bending modes are included and
the engine actuator is assumed to be described by a first-order differential
equation

Be - 0.07330 + 0.458=0

. pitching equation
- Pt 0.0405 Po + o +0.01067a + 0.211/3 = O

heaving equation

B+17.9@8 - 17.94, =0 actuator dynamics (4-18)
-3.4830 477 +0.02517 )+ 5.57y, - 1563 8= 0

~2.360 + 7, +0.05642 y, + 3180y, -22.778 =0

15t normal bending mode equation

2nd normal bending mode equation

where ¢:€ = rigid-body attitude angle
« = angle of attack
/3 = control deflection angle
¥, = first normal bending mode variable
Y, = second normal bending mode variable

The F and G matrices are written in the first-order form of Equation
4-15

v =Fy+Gu Yy = Ax

and the output matrix A is defined to be an 8 x 8 matrix of constants
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Gy 42 2y - %
Qi Gy Qan
a
31 (4_19)
A= .
-1y
@y : ’ : a‘n(n-l) @y
Then
n-1 n-2
IJL- _ a‘.” S 4-0‘.’)_’ S + . . . a[,
w s"+b, s n-1, b, s, . . by is the transfer function

relating the y; %  yariable of the equations of motion to the control input.
In terms of the numbers of Equation 4-18, the first-order equations become:

r¢;— o 1 o 0
¥, 0 1 0 0 o
%5 0 0 0 / 0 0 0
%y o o o o0 4 O 0
% 1o o o o o 1 0
i‘ o 0 0 0 ) 0 1
%, 0 0 o) 0 0 0 0
Lazg -9.074 2235 -2071 -3010 -193.7 -665.5 -38.71
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Yy = AN
Pe -19.4  -1376 -12.6 -2994 -0.755 -8.055 0O o ¥,
G 6 -194 1376 -126 -2994 -0.755 -8055 0O %y
« 5671 -1315 -60.62 -2998 -14.33 -8085 -317 0 Yy
T, 8332 -2057 2974 8946 1695  1283.4 ) 0 %,
7, 0 8332 -2057 197 894 1695 2834 0 g
n, 10.63 -2625 1942 2140 129 4076 0 0 v,
(4-21)
{zz 0 10.63 -2625 1942 2140 12.9 407.6 0 %,
A8 9.074 -224 3323 3008 26.66 664.1  lete 119 Yg
L —
Model

The model to be used with this example will be defined by the third-
order system

7, o 1 0 7,
.| (4-22)
?, =10 0 1 7,

_2‘3_4 0 1 _i L%_

The model incorporates the concept of the drift minimum require-
ment, the condition that leads to the cancellation of the sum of all force come
ponents, such as gust inputs, perpendicular to the nominal flight plane.

This cancellation of forces is equivalent to requiring a free integrator in the
closed-loop characteristic polynomial. Therefore the model characteristic
equation contains a root at the origin of the s plane

|Is-L| = s(s?+r4s+))

Analysis of the Optimal System

Substituting the characteristic polynomials of the open-loop booster
and the model along with their adjoints in Equation 4-13, the root square
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locus expression, the result is

9 s¥(s2+ 145+ 1) (4-23)
O_ - —
v (se179)st.294)(s¢.242) (52 .0a175)| 57 % 2(.005)232 s+(2320%[ 5%+ 2(005)5.64 54 (5.64)?]

The locus of roots of the optimal system is plotted in Figure 4.1. The
adjoint, or right-half plane part of the locus is omitted for clarity. The lo-
cus shows that the open-loop roots of the booster originally associated with
the rigid-body poles tend toward the model singularities, shown in the locus
as zeros. The remaining poles, originally associated with the bending modes,
tend to become distributed in a Butterworth filter pattern as the parameter
of the locus, q/r, becomes large. For any value of the weighting of the
error portion of the integral to the control, the accuracy of the approxima-
tion to the model in terms of the closed-loop root locations can be determined.

Optimal Control Law

The optimal control law is of the form MG, = -/Kx where Kisalx 8
matrix of feedback gains from the state variables of Equation 4-20 to the
control inputs. The closed-loop characteristic polynomial is

As) = |Is-F+GK|
= 5" (byrty)s T e by vl )T e o (b hy)s (b4 E))
=584 (1799+ ‘[;8)57+ [38.71+ £7)56+(é65.5+)66)55+ (/93‘7”55)54 (4-24)

+(3010+ #,) 53+ (20714 #5) 5%+ (-225.5+ £,) s +(9.074 + )

The closed-loop characteristic polynomial can also be obtained direct-
ly from the root square locus plot of Figure 4.1 for any value of q/r. For
instance, assuming that q/r = 100 will yield an optimal system that results

in an acceptable approximation to the model, the closed-loop characteristic
polynomial is

A(s) 2 (5+,0077)(s+17,9) [52+ 2(.75){.82)s+(ez)2] [524 2(4¢)(2.6)s +{2,6)2:] [s% 2(,/2)(6,2)5+(é.z)2:|
(4-25)
=584 2302574 195.675%4 1135.8 55+ 3372.55%; 7665653+ 71574 5%+ 3107.85s + 24.11

Equating coefficients of the powers of s in Equations 4-24 and 4-25 yields
the feedback control law

B, = 15.0%,-3331.3%, - 136,745 - 4875.6 1, - 3178.7 15~ 470.3,~ 107.2%,~ 5.03 % (4-26)

Or, in terms of the variables of Equation 4-21, the control law
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becomes

B, =Ky =-KAy
= 19324, +&34ée+.893x-.2597’ - 1627, - 456y, -. 04217, - .281/8  (4-27)

With the exception of & the variables of Equation 4-27 are still not in
terms of directly measurable quantities, i.e., in quantities that directly
represent outputs of sensors located on the body of the vehicle. A set of
measurable quantities can be chosen, such as the vector

' . . .
3" = [@, » B, » an’,A(zﬁ ’.Aa&“z,Aaﬁy’ , A@xz,,é’:] (4-28)

where ¢,’ , d," , and 23, , represent outputs of a position gyro,

a rate gyro and a normal accelerometer located at station ¥, on the

vehicle body and

A@, = ®¢1 - @@Z

A @2 = @/M’ - ¢%3
AQ, = @‘L, - @7,2
A @L = @t' - @y,J
A transformation = By can be formulated that defines the meas-

urable quantities of Equation 4-28 in terms of the variables of Equation
4-27. With this transformation, the feedback control law becomes

-1 . -
G = KAy =-KATE s (4-29)

If one chooses the vehicle body stations

%1 = 41.5 meters
¥Y; = 86 meters
%y = 122.5 meters

the feedback control law becomes

B, = 1933, +5363, +0.424a, + 72.9808,+0.2080@, - 19.06 08, +.032908,  (4-30)
' ’ " +3.06,3

The differential gyro realization of the feedback control law for this
particular case results in high feedback gains from several of the measured
quantities, resulting in a feedback control law that may be difficult to mech-
anize. It would be more realistic to select another set of measurable quan-
tities such as the set

3, =18, 04,25, )(8s,005, )(64,, 25, )] (4-31
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If this set is chosen, the control law becomes

,50 = 1,933 ¢¢’ +5.48 ¢¢, +.0486 ah, -.0564 @,’ +.0296 a4 v -.0592 ¢,,J + .oz¢4a% -0.354,

— — — _
sensors located at sensors located at sensors located at (4-32)
station %, = 41.5m station », = 86.0m station ¥, = 122.5m

where the units of 4/® and @8 /@ are rad/rad and rad/(rad/sec) and the
units of 4 /2; are rad/(meter/sec?). The control law of Equation 4-32 in-
volves feedback gains more easily mechanized than those of Equation 4-30,
but either control law will, of course, result in the same closed-loop char-
acteristic polynomial and closed-loop transient response. It is clear that
the realization of the optimal system is not unique, and many engineering
factors enter into the choice of sensed quantities and sensor locations.

Equivalent Compensation Network

The optimal feedback control law may be synthesized as a filter or
compensation network in the feedback path which shapes the signal of the
output of one or a linear combination of sensors. There are, however, def-
inite restrictions and qualifications that must be placed upon such a synthesis
procedure. The two systems, one synthesized by feedback gains and the other
synthesized through a filter network, will not respond exactly alike to initial
conditions of the state. Therefore, one must be content, when using a feed-
back filter synthesis procedure, with a synthesis of the closed-loop poles of
the optimal system rather than a complete time history equivalence.

A filter must satisfy certain characteristics of realizability that simply

do not have to be considered when gains are fed back from a set of state var-
iables. So the filter problem is more difficult than the straightforward feed-
back gain procedure of synthesis. The technique of specifying a filter is
uncomplicated. Because the system has been assumed to be completely lin-
ear, the state variables are related to each other through transfer functions
and therefore one state variable can be reconstructed from a measurement
of a second state through a filter network (with the exception, of course, of
the initial transients of the filter itself). There are limitations to this kind
of reconstruction. The most important limitation is that the open-loop trans-
fer function of the measured state variable must be minimum phase. Other-
wise, the filter will have right-half plane poles, creating an unstable config-
uration for even the slightest variation of the launch vehicle or compensation
network parameters. The second limitation to the reconstruction procedure
is that the transfer function of the measured state should have a numerator
polynomaial of order n - 1, where n is the number of first-order equations of
motion that describe the system's dynamic motions. This requirement will
quarantee that the compensation network will contain a numerator polynomial
that is not of higher order than the denominator polynomial and the filter will
be realizable.
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3¢
Each of the transfer functions 73:" (s) of the open-loop launch vehicle
can be expressed as the ratio of two polynomials in s of the form

LA
ﬂc (s) = D

where

N;(s) = the numerator polynomial of the transfer function for
the ith state variable, and

D(s) = the open-loop characteristic polynomial of the launch
vehicle,

The transfer function of the /4; state variable is simply related to the trans-
fer function of the 4; state variable through the expression

i Nj N,
3 , (4-33)
g Ty BT

Using this relationship among the states, a feedback control law
Bo = /57« can be reconstructed from a measurement of a single state, say
%, » in the following manner

ﬁo = f,@, +)627.2+i3?3+...+i”/;,”

(4-34)

il

1

N, N, N
‘f,,/z‘,,J-fzz/—zi(s)71+i3-/\/—3(s)?1+...+‘fﬂvn(s)/j,/
7 !

_ C}'f Z”: ‘f N
- 7 (s) .Y (s)

1 i=q

The transfer function of the required compensation network is then
given by

, ﬂ
YO = B+ — S £ A
"N, () ‘22 ¢ i (3) (4-35)

Suppose it is desirable to reconstruct the control law in the manner
described above from a measurement of not more than three of the state
variables of Equation 4-32, Consider the numerators of the transfer
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functions of these states which are given below:

Ng,,, (9 = -1945°- 13355%-570 s%-1365%- 13155 - 2185
1
N, () =194 56 133555 5.70s% 12657 - 13155%- 2185 s

1

N, (5) = = 141157+ 1.7945% 4 2131554 164.35%+ 28,260 53- 33.705%- 94505 + 362.8
(%)

Ny, ()= 23.995%+. 443574 5265 5% 10.695° - 1443 5%- 16.68 5 (4-36)
2

(

N"a (s) = 62.655"- 16465 11,2605 °- 41,95%- 45,470 5%~ 966.95%- ¢ 7745+ 274.6
(x;)
Na,, , () = 319855 . 5146574 494.95%- 117257 -15975%-10.67 s

3

N, (s) = 255757- 6.7235%+ 176455 - 784.35% - 110,400 5% -14315%- 36415+ 147.7
(%5)

A/ﬂ {(s) = 17957+ 16165+ 664./s5fzé.éés4+ 3008534 33.235%- 2245 +9.07¢

We wish to choose as our measured quantity a state or combination
of states whose transfer function contains a minimum phase numerator
polynomial of not more than seventh order. None of the polynomials of Equa-
tion 4 -36 qualify in themselves, but a combination of these polynomials will
satisfy the measurability requirements. Several combinations will yield the
desired characteristics, so as an example we can choose the sensed quantity
tobe A=/8-(@,, +@,,). The numerator of the transfer function
is given by

Ny(s) = Ng (s)-[/\/%) (s)+ Ny, (5) ] (4-37)
Substituting for Ay (s), l\/¢(z) (s) and Nd(,,) (s) from Equations 4-36
N,(s) = 17.9 s7+ 2102 5% 685. 55 5985%+3590 5541362524 11135 1 30.9 (4-38)

N, (s) is of seventh order and a Routh's criteria check of N, (s) = 0 shows
all the roots to have negative real parts.

Using this sensed quantity, there are still several ways the feedback
control law may be synthesized. For instance the quantity A = &- (05,41 + (Z,h)
may be the only quantity fed back to the gimbal actuator input, as shown in
Figure 4.2,
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Be I
LAUNCH
(S)—= AcTUATOR VR
+

] 1

- +
COMPENSATION ZRi HZ +

NETWORK

Figure 4.2 One Realization of the Control Law

or, as a second example, the attitude and attitude rate parts of the control
law may be independently fed back, as in Figure 4.3 below:

A [ LauwcH

ACTUATOR VEHI CLE

¢¢, @'
[1.933 |= %4

COMPENSATION + +
NETWORK Z Z

Figure 4.3 A Second Realization of the Control Law

Using the results of Equation 4-34, the transfer function of the com-
pensation network of Figure 4.2, which realizes the control law of Equation
4-32 is given by Equation 4-39:
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tNE)
1 Nals)  Ny(s)

2

R

[I. 933 N%) (5)+ 548 N 1, (5) 40486 /\/%', (5)-.056¢ N‘% (s)-.0296 N, ” (s)

- . 024 - 0.
'MQZN“’(W(S) Hos N”?(»,)(s) 035/ (s)}

-5.305"-106.85°- 469.25°%- 3168.857-4880.3 53~ 7188.55%- 33275 - 15.02 (4-39)
17957 21.025%+ 685,55+ 5985 %+ 359053+ 13625% 11135 + 30.9

-5.30(5+.0456)(5+.635)(5+ 16.82) [5%+ 2(163)(5.19¢) 5+ (5.196)} [[s% 2(. 337)(14¢8) 5+ (148

179(s +.0287) [sz.u 2(.0219)(5:64)s+ [554)2][32,« 2(114)(2.38) 5+ (2.38)* ][ 5% 2( 308)(377)s+ (577)?]

The transfer function of the compensation network for the realization
shown in Figure 4.3, on the other hand, is given by

£ N (s) !
= L0F86 N, (5)-0564 Mg, (s)+.0296 N, (5)-0592Ny (5)+.044N, (s)-0.35Ns(s
=3 MNjy(s) Ny (s) ‘s, ¥ ) G ) (% ) iny ) 6
-6.30s7-.5875% 424.45° 46,25 3708,75% 978¢45% 66745 4 2718 (4-40)

17957+ 21.025% + 68555+ 5985%, 350053+ 13625%4+ 11135+ 30.9

-5.30( s-.o4/5)[sz+ 2[-.0012)(8.37)5+(8.37) ‘][sﬂ 2(.025¢)(3.125)54(3.125) ‘][s’+ 2/.0145)(4296)s+ (- 429%) 2]
179(s+.0287)[s% 2 c219)(5.64)5+ (564)"][s% 2 119)(2.38)s + (2.38)2 ][5 % 2. 208) 57754 577)% ]

Although the filter transfer functions described in Equations 4-39 and
4-40 are of seventh order, they may be realized without great difficulty. If
it is objectionable to have a seventh-order numerator polynomial, then it
may be possible to synthesize Equation 4-30 instead of Equation 4-32 using
the same sensed quantity A= B~ (@, + @J,,) but feeding back the actuator
deflection part of the control law 3.06 8 separately (i.e., not reconstructing
its effects by the compensation network). The resulting compensation net-
work transfer function would be the ratio of a sixth~ to a seventh-order
polynomial.
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So again it is found that the synthesis of the control law is not unique,
and a search should be made of the control configuration that presents the
fewest problems from a mechanization point of view.

The compensation network transfer functions of Equations 4-29 and
4-30 were synthesized from expressions of the exact optimal control law of
Equation 4-32. If a compensation were to be synthesized for an actual
vehicle, there are several steps that would be taken in the normal event of
system design that are not shown in the preceding analysis. First, approx-
imations to the control law of Equation 4-32 would be made. Perhaps some
of the feedback gains can be eliminated entirely, a procedure that would alter
the strict optimal character of the design, but may still yield a satisfactory
and acceptable vehicle response. The second procedure would be to simplify
the compensation network itself to yield a simpler design, still retaining
an acceptable closed-loop vehicle response. It is felt that a fair number of
simplifications can be made before the response becomes unacceptable (such
as unstable bending modes). Therefore, the optimal control law can be used
as a guide which defines a superior system. The aim is to realize a control
law as close to the optimum as practical considerations will allow.

Multiple-Feedback, Multiple-Compensation Synthesis

Although it may be possible to synthesize the control either as feed-
back gains or as a single compensation network, neither of the two synthesis
techniques are entirely satisfactory. The first technique requires a feedback
path for each state variable used to describe the dynamic characteristics of
the launch vehicle. It is clear that when many elastic modes of motion are
to be controlled, the number of sensors required to realize the synthesis is
prohibitive. In addition, there would be no way to compensate for the dy-
namics of the sensors themselves, which may present a problem if one is
trying to control bending modes whose natural frequencies are in the neighbor-
hood of the natural frequencies of the sensors themselves. Approximations
to the control law, obtained by ignoring feedback paths or by using least
squares approximations, may still require too many feedback paths or may
result in closed-loop dynamics that are altered far beyond allowable toler-
ances.

The second technique, which requires that a compensation network be
synthesized to shape the signal output of a single sensor, is an equally unsatis-
factory approach to optimal control system synthesis. If the compensation
network is synthesized in the feedforward path with unity feedback, the com-
pensation network must contain zeros that cancel the unstable open-loop poles
of the launch vehicle. Because pole-zero cancellation of unstable poles is phy-
sically impossible, the technique is worth not more than ephemeral consider-
ation. No systematic approximations to the optimal will produce a mechaniz-
able, stable result without at least an increase in the order of the system.

A compensation network in the feedback path shaping the output of only one
sensor has difficulties almost as insurmountable as the feedforward compensa-
tion scheme. If the transfer function associated with the measured output is
non-minimum phase, the exact compensation network must contain right-half
plane poles to cancel the right-half plane zeros of the transfer function of the
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sensed quantity. Therefore, in order to realize this type of compensation,
one must either choose a sensed quantity whose transfer function is mini-
mum phase or one must approximate the filter, either by deleting the unstable
portion of the network or by approximating the unstable part with stable com-
ponents, a procedure that may produce some difficulties. In any case, the
order of the filter before approximations are made is equal to the number of
state variables used to describe the launch vehicle dynamics., If a dozen
elastic and slosh modes of motion are to be stabilized, the order of the re-
quired filter can be very high. Finally, the stability of the launch vehicle
depends upon the reliability of sensing a single dynamic quantity, which may
not be desirable.

A review of the difficulties associated with the synthesis procedures
outlined above can lead one to the requirements for a desirable synthesis
procedure:

l. The synthesis procedure should involve more than one sensor
but fewer sensors than the number of states of the system.

2. The compensation networks should be in the feedback paths
to avoid the pole-zero cancellation problems associated with
feedforward compensation.,

3. Each compensation network should be of order lower than
n-1, where n = the order of the plant.

4. The synthesis procedure should be methodical, with systematic
selection of the poles and zeros of the compensation networks.

5. The synthesis procedure should contain the ability to compen-
sate for sensor dynamics.

6. The synthesis procedure should be amenable to rational,
systematic methods of simplification. It should be possible
to predict beforehand the consequences of a particular step
in the simplification process.

7. The order of the characteristic polynomial of the closed-loop
system should theoretically equal the order of the open-loop
system, even after approximations and simplifications are made
to the compensation networks.

8. The compensation networks should be chosen, if possible, such
that the vehicle would not be unstable with the failure of any one
feedback path.

The requirements dictate that the synthesis procedure should be a
compromise between the feedback gain procedure, which avoids the pole-
zero cancellation problem, and the single sensor synthesis technique, which
eliminates the need for an excess number of feedback paths, Schematically,
the block diagram of Figure 4.4 indicates the requirements:
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ELASTIC LAUNCH VEHICLE
—] a,,,_,s"'ia,,_zs”'z+...a.‘, ——’—‘L——

& b ! b 5”2 b 92 I
N - -2 - s"+b,
Q Sﬂv‘d,)_,s)7 /+dn_25” +... 0, n-1 n-2 o

n-1 n-2
L—- an_,s +cn_25 $...C

COMPENSATION NETWORK #3 -

COMPENSATION NETWORK #2

L—————- COMPENSATION NETWORK #l

Figure 4.4 Block Diagram of Desirable Control Law

where the sum of the poles of the three compensation networks equals n - 3,
where n is the order of the system.

The requirement that a systematic method be devised for the selec-
tion of the filter poles and the desire not to increase the order of the closed-
loop system demands that the poles of the compensation networks be chosen
from among the zeros of the 4i/8, (s) transfer functions.

The dynamical description of the elastic launch vehicle must be such
that three of the states are ¢,, ¥,, Ys. The remaining states must be
chosen such that each state is relatedto ¢,, ¢,, or ¢, by compensation net-

work component parts. In other words, we wish to be able to describe the
control law as

n
é = ~Zl t[yé
it
“w = - [iyyli'tzé/,'*i:syr"* tpn g,p]

AT R PICIALS WOV REE WLy (4-41)

- [t.p+q+3 .‘/3 *£p+q+4, g.s,* frgf.b' 93 e ”'in g,"], Prqg+r =n-3
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where ’ "

14
—L(s) ! I (s - s ete.
4, S+, Y, 5+,
’ 7"
Yy a
sy = O % () 2 eto.
Y, s+/3, Y, s+,@z
’ 1"
e
_gl(s) = ! _gL(S) = z ete.
Yy 5+ Ys s+ 7,
and
n-1 n-2 d =
a,,5 +a,,s + +a, =0,, :171' (s+a;) u < n-t
v
b n-! n-2 _ TT- Z
n-1 9 +bn_25 * * bo - bn-f je (5+161') veEn-1
w
n-1 n-2 _ TT Z
Cp.1 S #Cpu.z2 8 '+ *C =0, (5*9;(-) w & n-f

The control law can then be specified in the form:

g, 4, y,?
uls) = -1k, + £, —(s)+ £, (s)+ ...+ ip*,———(s)g,(s) R
1 4, 4
~ ' r 4
- if’*fif’“ —y’—(s)nep“, i ()it kg2 -gz—(s):l Y,(s) g <v
- flz yz gz
[~ 4 14 r
-1k +E 95 (s)+ & ¥ (s)e...+ £ 4 (s) |ys(s), +r ¢ w
P+rq+3" Tprq+4 _‘j—— P+q+5 T n— 3V (4-42)
L. 3 3 3
or "
%y C e
LL(S)=-[:‘£,+ z 7, 37z ...+ GALENE 4 jlg,(s)
S+, S+, S+
f
i t,.d, ¥,,,d £
- ﬁp+2 PR B A AP A A q’:l 4, (s)
i S-&-ﬁ’ 5+ﬂ2 5_,[64
i tﬂ+q+4 €, i.p+q+5ez ~ér)er
- kp49'5+ + ¥t Yy (s)
L s+, S+, $+7,

(4-43)
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The control law of Equation 4-43 specifies three compensation networks
shaping the outputs of the three sensed quantities ¢, , 4, , and y,. Because the
order of the filtersis p<n-1, q<n-1, r<n-1; p+q+r=n-3, the
poles of the filters may be selectively chosen from the roots of (5+ &; ),

(s +/3;), and (5+ % ), which have negative real parts, avoiding the pole-zero
cancellation problems of single-sensor synthesis.

The control law of Equation 4-43 suggests a methodical sequence one
may use in the process of simplifying or approximating the optimal control
law. The contribution of each state variable to the total compensation net-
work depends upon the magnitude of the feedback gains associated with the
particular state. For instance, if in the compensation network

£, c t £
Y (s) = ~£~,1+ 21, s %2 +,,,+_ﬁi_cf_ (4-44)
S+, s+, S+,

the feedback gain k. is found to add negligibly to the closed-loop dynamics,
it may be possible g‘o ignore the gain, yielding the approximate network

Y(s) = [i, + £y 2 PR fﬁi_ai:\ (4-45)

S+, S+(¥P

resulting in a simpler, lower order compensation network.

Required Dynamical Description of the Launch Vehicle

In order to synthesize the system with three measured quantities and
three compensation networks, it is probably necessary, and certainly exped-
ient, to describe the system in the following form:

v = Fuv+Gu
. 7] [ ﬁ [ ] — 7
%, 0 {f o - - « 0 o %, 0 (4-46)
Y, 0 0 1 %, 0
.= +
Yy Yy 0] ﬂc
f 0 .
'y-'"_’ O L4 O 1 x"-’ O
%n -d, ‘d1 -d, *r ~dyy cdyy %n L f
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y = Ay

Q'T ao 0., e e . a,,_3 a,,_z an_, ’)61
7 ’ ’ [} ’

4 a’o a’f : c an-J a‘n-z 0 Yz
” 14} 144 1" rn”

4 @, a - - - Gy &y.2 0 %y

92 bo bl ‘ v bn-5 bn-z bn-f '”.p”
' ’ [ ’ ’

gz bﬂ b, . . bn 5 b ",z 0 ,M'P + z
n " " ” ”
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The elements of the F matrix are obtained from the open-loop char-

acteristic polynomial D(s) = S"+d,,_,s”"4 d,,-zs"'z+ R,

The elements of

the A matrix are obtained as follows: The first row of A is obtained from

the numerator of the Y% /ﬂ{} {s)
The second row of A is obtained from

n-1 n2
n1S Flp, S5 ... 7 a, ’ ni, n-3

4
Q.5 +Q, 35 t...+ 4,

54—05,

Similarly, the third row is obtained from

n-1 n-2
2y S + a, S e, F 2, " -2 " n-3 7
= a”,zs +4a

S+,

transfer function a,_, s”"+a”_z s™2, ...

&40

(4-48a)

(4-48b)
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and all other rows of A are obtained in a similar manner.

Simple Example

Consider the plant represented by the block diagram

4

p (s+2)(s-1)

D=sl+52+5+2 (5‘3)(5*4) gz

t,

F, (s)
F, (s)

It is desired to synthesize the system as shown, with two feedback
paths and with a realizable compensation network in the 4, feedback path,
such that the closed-loop characteristic polynomial is

A(s) = s® +25%2+ 35 +4.

From the transfer functions

s? + 75 +12

g,() s’+s5 -2 i(s)=
—(s) = u 3+s524+5+2
w s3+5%2+5+2 5

the state space description of the plant is obtained

% = Fx +Gu

%, o 1 o |[% [

¥, = 0 0 1 ')62 + u
%, -2 -1 - %y 1

y = A%

Y, -2 1 ! %,

q,’ = -1 1 0 'Y/z

yz 12 7 1 %3
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where the first row of A is obtained from numerator of the 5,/4 (s) transfer
function s® + s - 2 and the second row is obtained from

s+s5-2
—_— = S -
S +2 !

while the third row is obtained from the numerator of the lj% (s) transfer
function s? + 7s + 12.

Solving for u = -Kx, we follow the procedure of Equation 4-24
-2 - k1 = -4 kl = 2
-1 - kZ = -3 kZ = 2
c -2 -
-1 - 1\3 - k3 1
In terms of the variables 4, > Y ", and Y, > the result is
U=-Ke = —/dA”g
_ — . F A
-2 1 4,
- —_ - [ - _ 3 , 7 ___’_
“ EZ z 1] I 1 0 Yy T Y%7 Y, 7%
LfZ 7 1 Y,

14
Since %W, ) = 7/5* 2 | the control may be synthesized as
Y, y y
3 /2 /
- [Z - S+Z} %(S)“zyzfs)

%
_[ gLy, (5)]
S +2 4

which yields the desired closed-loop characteristic polynomial

w(s)

i

A(s) = s3+ 2s® + 3s + 4,

Although the example is quite simple, it does illustrate the princi-
ples involved. The number of feedback paths is less than the number of
states, yet greater than one. A compensation network has been systemati-
cally specified for the non-minimum phase variable y,;, yet the compensation
network is realizable, containing no right-half plane poles. In addition, it
would be relatively easy to investigate the consequences of omitting a feed-
back gain, but a simplification of this type would not increase the order of
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the closed-loop system.
The multiple-feedback, multiple-network synthesis procedure was not

tried in the elastic launch vehicle problem, but it is clear that the techniques
illustrated are directly applicable.

Response of the Optimal System

The closed-loop response of the vehicle, using the feedback control
laws of Equation 4-32 or Equation 4-30, is shown in Figures 4.5, 4. 6 and
4.7, Figure 4.5 shows the normal acceleration response at the three sensor
locations indicated in Equation 4-32. The input command was a step, a
severe excitation to such a system, but calculated to excite the bending mo-
tion and enhance the residues of the poles originally associated with the
bending modes. The effect of the first bending mode shows clearly only at
station ¥; = 122.5 meters. The second mode oscillations are clearly shown
at all three locations. These oscillations are reasonably well damped (for
a bending mode), the measured damping ratio of this mode closely matches
the predicted Z = .12 from the root square locus plot. Figure 4.6 shows
the attitude response of the vehicle at the c.g., ¥ = 41.5 meters. The re-
sponse is smooth, showing very little contribution from either bending mode,
but this is to be expected because the mode slopes are small at this location.
Figure 4.7 shows the control motions required to achieve the responses
shown in the previous two figures. Except for the initial abrupt response,
the control motion is reasonable, and shows, in general, that the system
could probably have been speeded up somewhat before encountering an un-
acceptable control motion.

Parameter Variations

The bending characteristics of a large flexible launch vehicle are
known only to a fair degree of accuracy. The normal bending mode shapes
and slopes are subject to uncertainties depending upon the mode number and
the vehicle body station. It is necessary, therefore, to calculate the effects
of variations of the elastic properties of the vehicle on the closed-loop opti-
mal system. A series of variations in these elastic properties was speci-
fied and their effect on the system, defined by the control law of Equation
4-30, was calculated. The transformation B relating the vector 3 to the
vector y is defined by the equation shown at the top of page 53.
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Figure 4.5 Normal Acceleration Response at
Three Body Stations
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Figure 4.6 Attitude Response of Optimal System
at Booster Center of Gravity
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Figure 4.7 Time History of Optimal Control Motion
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where

= normalized mode deflection of the jth mode at the ith body

Iy .
! station

J"(«) = normalized mode slope of the jth mode at the ith body station |
! |

At body stations %, = 41,5 in., %; = 86.0 in, and %3 = 122, 5 in., the
nominal bending mode and slope values and their selected variations from

the nominal are given in Table 4.1 below:

TABLE 4.1

NOMINAL MODE CHARACTERISTICS AND
EXPECTED RANGE OF VARIATIONS

Mode Characteristic Nominal Value Expected Range of Variation

Y,m’) -0.390 +15%
Y,’u’) +0.028 +15%
Yain,) -0.555 *15%
Y2’(¢,) +0.0085 +15%
Y,'(h) -0.025 £25%
Y2 (xy) -0.060 +35%
Y txpy -0.123 +25%

Z,ﬁ‘s) +0.143 +25%
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A brief program was conducted to investigate the variations of the
closed-loop poles of the system with the control law fixed as defined by Equa-

tion 4-30. The results for a few of the parameter variations are tabulated in
Table 4.2 below:

TABLE 4.2
VARIATIONS OF THE CLOSED-LOOP POLES

NOM I NAL ALL MODE ALL MODE

PARAMETERS PARAMETERS V!

INCREASED DECREASED Z(xy) Y.Ly,

ONLY ey’ Z(xy)

(SEE TABLE (SEE TABLE 3 3

4. 1) W 1) INCREASED INCREASED
s @ -.00770 -.00833 -.00790 -.00750 -.00820
s = -17.901 -17.901 -17.901 -17.901 -17.901
s =-.612+ .54 - 614 £ j.478 -.615 + j.526 -.611 % j.565 -.618 £ j.496
$=-1.200 + j2.304  -1.187 + j2.319  -1.197 £ j2.309  -1.200 + j2.299  -1.193 + j2.316
§=-.743 + j6.155  -.744 & j6.154  -.7H4 + j6.155  -.7W4 + j6.156  -.744 + j6.IS5I5

A casual examination of Table 4.2 will disclose that the optimal system
is not particularly sensitive to variations of the bending mode parameters of
the launch vehicle, even though the variations of the closed-loop roots tabulated
in Table 4.2 represent the widest change of closed-loop dynamics discovered
using the selected mode characteristics of Table 4.1. The variations were
selected at random, and therefore an absolute conclusion concerning insensi-

tivity cannot be made. However, all evidence points to a very insensitive
design.,

Control Law Approximation

A least squares fit of the control law of Equation 4-30 using only three
of the eight state variables was calculated to determine if a direct approxi-

mation to the exact control law could result in an acceptable elastic booster
control system design.

The requirement is that the outputs of three sensors located at station
1 = 4l.5 meters are to be used to approximate the vector

f/’= [¢g' dniw’ 77’72‘1’73’ éz’ﬂ:l

and therefore the optimal control law of Equation 4-30. The relationships
defining the outputs of these three sensors are:

x
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@, 1 0 O -028 0 -0085 0 0 Ge
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@ | =|ot o o -028 0 o085 O g
(1
a, 0 0 2105 1904 .00905 16786 .0313 -788 7,
%
— — 5 4-4
| 7, (4-49)
Yy
A
71 = BI Y /6
L7

where B, consists of the first three rows of the square matrix B defined by
Equation 4-33.

The least squares fit is calculated by computing the generalized in-
verse of B, called B (Ref. 7). The generalized inverse is obtained by
solving for the matrices N and M such that

, R , (4-50)
81 E,M =NBI B = 31
then
B = NG M
The approximated feedback control law then becomes
-1
B =-KA ,*%’ (4-51)

For this particular problem, the least squares fit to the control law
of Equation 4-30 is

,6; = 19395 ¢,x, +5.362 é,,r - 0,0/035434‘ (4-52)
1

The feedback control law of Equation 4-52 can be easily mechanized.
The closed-loop characteristic polynomial obtained by using the approximate
optimal control law of Equation 4-33 is:

A(s) = (s+.0225)(5+.377) 5+ .428 £j1.56][ 5 + 6.93 + [4.68) [ s +.703 + j5.6]]

Comparing this characteristic polynomial with the characteristic
polynomial of Equation 4-21 shows that the approximation has preserved sta-
bility but the drift minimum property of the design has been compromised.
It appears, however, that the technique shows promise for obtaining accept-
able control system design approximations of the optimal system, although
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there is no reason to believe that all approximations of the type given above
will result in stable closed-~loop configurations.

Perhaps the best way to incorporate the idea of the generalized in-
verse into the control problem is to use the generalized inverse theory to
adjust the zeros of the compensation networks of Equation 4-45 after the
k. having negligible effect on the closed loop dynamics have been deleted from
the control law.

Addition of the Third Mode

A third bending mode was added to the definition of the launch vehicle
equations of motion, The purpose of this addition was to obtain the effect on
the third mode of a control system designed to increase the damping ratios
of only the first two modes. The equations, which include the third mode,
are given in Appendix A. The third mode has a natural frequency of @ = 9.18
rad/sec and a damping ratio ¥ = .005. Using the control law of Equation 4-28,
the closed-loop poles originating from the third mode were unstable, having
a closed-loop natural frequency of @, = 7.885 and a damping ratio of § = -.206.
This mode could, of course, be included in the system design and stabilized
with a corresponding increase in the complexity of the control law,

It should be stated that the sensor positions selected for the control
law of Equation 4-32 were chosen without regard to the third bending mode
characteristics at the particular sensor locations. An obvious way of re-
ducing the effect of the control law on higher modes is to judiciously locate
the sensors to minimize the mode pickup. A less obvious way is to add a
constraint to the problem that would have as an objective a design that would
decrease the sensitivity of the third mode. This design would result in a
filter to desensitize the third mode.

A few generalities can be made on the use of a model to specify a
desirable response. The technique seems to be the straightforward, sim-
plified way to design a closed-loop system, optimal or otherwise. The
optimal aspect of the problem is secondary if the only requirement is to
match the poles of the closed-loop system to the poles of a model. The opti-
mal aspect of the selection of approximations to the model should be pre-
served for at least three reasons which are implied, but not proven, in this
section. First, the optimal formulation of the problem considers control
motion deflections. If the control motion amplitudes are too large (for a
specific input) it is necessary only to weight the control portion of the per-
formance index more heavily, resulting in lower amplitude control motions.
No other design technique, particularly for complex systems, can specifi-
cally consider the control motions as part of the problem objectives. A
second advantage of optimal control is also peculiar to the technique. It
has been observed that the closed-loop poles rapidly approach the Butter-
worth configuration, i.e., the asymptotes of the locus. In general, the
root square locus plot appears to approach its asymptotic values faster than
for an ordinary root locus plot. Once the closed-loop poles approach the
asymptotic values, the poles become relatively insensitive to changes of the
coefficients of the original equations of motion. Since a large number of
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examples have shown that the root square locus approaches its asymptotes
at a lower increment in frequency than an equivalent root locus, it can be
safely stated that a linear optimal system is equivalently less sensitive than
a conventionally designed system. Finally, the root square locus expression
enables the designer to systematically select all of the poles of the system,
particularly when the model and the plant are of different order.
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SECTION 5

THE APPLICATION OF LINEAR OPTIMAL CONTROL
TO SYSTEMS CONTAINING UNCERTAIN PARAMETERS

Introduction

Most of the synthesis techniques available to the designer depend
upon the assumption that the plant parameters are well known, This assump-
tion is not valid when one considers the design of a controller for a flexible
booster. Variations in the plant parameters are, of course, expected to
occur over the flight envelope of the booster, but quite aside from this effect,
there is the problem that even at a specific flight condition (where one can
usually assume the plant parameters are constant) the values of the various
coefficients, particularly the flexible mode shapes and slopes, are not known
exactly.

The bulk of the theory which treats this case has, in the past, consi-
dered the situation in which the statistical variations of the plant parameters
take place over a period of time., The situation which is of more interest is
the case where the plant parameters are relatively constant over time but
can be considered as random variables described on a sample space. Some
recent research in this area has approached the problem by incorporating
some measure of the randomness or variability into the performance index
prior to the minimization and specification of an optimal control law. In this
way an expression for the optimal control is developed which reflects the
fact that some of the plant parameters may not be at their nominal value.

One approach to this problem can be formulated by asking for the
compensating networks which minimize the E {ZV}. That is,

min. min. T
comtp. E[ZV}= comp. E f(g’@g+w'fo7a)dz‘
netuwerk network ()

If the equations of motion which describe the system are manipulated
into the vector form

¥ = Fx +Gu

where F and G have entries which are random variables with the joint density
p(F, G), this problem can be stated as

; 7
notiork //“p(F’G) I:o/(é{ Qy+u Qa)o’t:l JEAdG

In this section, it is not our intent to formulate the problem in the most
general manner possible (that is, consider the multi-controller and multi-
output situation) since it is desirable that we gradually work our way into the
problem and develop a ''feel” for the mathematics involved. It will suffice to

/
*In this report expressions such as ’Z” E {Z\/} will read as ""The control
u which minimizes the expected value of 2V,
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say that all the tools required to extend the single-input, single-output case
to the multi-controller case are already available within the present frame-
work of the calculus of variations, Thus we will be content with outlining
the background philosophy, solving three simple illustrative problems, and
applying what has been developed to the task of investigating the character-
istics of the optimum compensating network required for a flexible booster
(only the first bending mode will be considered).

The equations which define the conditions of optimality will be de-
rived using frequency domain methods. Appendix B considers some of the
difficult points which arise with nonminimum phase systems since the trans-
fer functions which describe the booster have both poles and zeros in the
right-half plane.

Preliminary Comments

To begin, assume the feedback control system shown in Figure 5. 1.

Figure 5.1 Forward Loop Compensation

The compensating network, Wc’ is to be designed in such a fashion that the
expression

2V = o/[e(t)2+ru(t)"]0’t 5-1)

is minimized. In Figure 5.1, & represents the control (or input) to the
fixed elements of the system W(s). The above statement may be expressed
in the form

)\7/: ofco[e(t)2+ra(t)z:]dz‘ 5.2)

Although it may be possible, it is believed that the analytical difficulties
involved in minimizing Equation 5-1 by solving directly for the optimum
compensating network are insurmountable. In the past, some writers (Refer -
ence 8) have attempted to sidestep the difficulties involved by reformulating
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the problem in an open-loop manner, and then solving for an open-loop com-
pensating network. That is, they formulated the problem as depicted in
Figure 5.2.

W, W -

Figure 5.2 Open-Loop Configuration

This, of course, is completely unsatisfactory when W(s) contains nonminimum
phase components.

In the event that W{(s) is completely known, the analytical difficulties
involved in finding the optimum compensating network may be avoided by
solving for the optimum value of some other system variable such as the
optimum control or the optimal error. These problems turn out to be quite
tractable and present no insurmountable analytical road-blocks. Once either
the optimal error or the optimal control has been found, it is a simple matter
of algebra to solve for the optimal compensating network. As an alternate
procedure, one might elect to solve for both the optimal error and optimal
control and then define -

oo
”'L’;”[(ezv‘rwz)a’z‘
og
min [ ez, rut)at
0

Wc=

All of these procedures obviously yield the same expression for Wc when W
is completely deterministic,

When W(s) contains uncertain coefficients, described only by proba-
bility density functions, it seems reasonable to find the compensating network
which minimizes the expected value of the performance index. However,
one cannot solve for just the optimal control which minimizes the E {ZV} and
then algebraically manipulate the blocks to find W _ since W is unknown {for
any given system). Nevertheless, it can still make sense to define

" E [[ (ehrw)dz}
) o
’Z”E{f (e%rw‘*)a’é}

That is, define the compensating network to be the ratio of the control which
minimizes the expected value of the performance index to the error which
minimizes the expected value of the performance index. Defining the

(5-3)
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compensation in this manner is a subjective decision which is certainly open
to discussion. However, one feels that the final decision as to the '"goodness"
of the choice should rest with the results achieved -- namely, does it design
"acceptable'' systems.

It is, of course, difficult enough to decide when a system is accept-
able even when all the parameters are known precisely -- thus we expect
that our difficulty in deciding this question must increase as our knowledge
of the system becomes less precise. However, the simple illustrative exam-
ples which follow do seem to indicate that there is merit in the idea of finding
the compensating network which minimizes the expected value of the perfor-
mance index, Notice that this does not necessarily imply that the perfor-
mance will be less sensitive to parameter variations nor does it guarantee
that any particular system which uses the average compensation prescribed
by the analysis will be stable. (Of course, one would hope that this might be
a by-product of the design procedure.) It would thus seem worthwhile to
expend additional effort to determine the relationships, if any, which exist
between parameter sensitivity, stability and the minimum of the expected
value of the performance index.

We will take Equation 5-3 as the definition of the compensating net-
work to be employed for the system depicted in Figure 5.1. If a different
feedback configuration is desired, say that of Figure 5. 3, WC might be defined
as

- min E{[?eh raz)a’z‘}

W, = Lo
¢ g"’ ”;/nE{‘{ (ez"'rlbz)dt} (5_4)
where
© w Y
. W
We

Figure 5.3 Feedback Compensation

It is still necessary, in any alternate compensating scheme, to solve
for at least two optimal variables of the system.

In the deterministic case, one may show that the following Wiener-
Hopf equations define the optimal conditions (References 2 and 9):
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= W (5-5)
r 7
] e e

where W = W(s), W = W(-s) and %,, 4, » and 4, have inverse Laplace trans-
forms which are zero for t> 0. In the event that W(s) is a minimum phase
system, it suffices to say that 4, (s) , 3, (5), and 4, (s) are analytic in the left-
half plane. Statements such as 4,(¢) = 0 for t 2 0 are sufficient conditions
which, when satisfied, insure a minimum value for the performance index.

It may occur, for example, that 4, (s) = constant. In this case the sufficient
condition breaks down and one must resort to a more general condition which
is both necessary and sufficient (refer to Appendix B).

In the nondeterministic case, precisely the same sort of analysis
leads to the following expressions (again refer to Appendix B)

:r‘+ E{W\T/” u,- RE{W} = 2 (s)
-

“rE{wW}_e" r‘EE{WW}-%(s)

(5-6)

=
!
1+vE {—WW}J Y, - K - %5 (s)

where E{ }represents the operation of taking the expected value of the quantity
in brackets. Again Z"[%(s)] , etc. are required to be zero for t 2> 0,

In the multi-control case, if the equations which represent the system
are given in the first-order form

v = Fr+Gu gy =Hy

with e
2V = f(q’0g+a'72u)dz‘

and where F and G have entries which are random variables with the joint
density p(F, G), the analogous procedure is simply to find the optimal control
which minimizes the expected value of the performance index as well as the
expressions for the optimal state variables which minimize the expected
value of the performance measure. Thus, the sum of the convolutions of
unknown network impulse responses with the optimal state variables, which
are set equal to the optimal control, will serve to define the required feed-
back. The tools for this type of an analysis are already available within the
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framework of the classical calculus of variations.

Illustrative Example No. 1

Experience indicates that the simple first-order system shown in
Figure 5.4 is adequate to demonstrate the important features of the theory.

2 e @
W / ’

Y

+

Sta

Figure 5.4 First-Order System

It is assumed that the exact value of 2@ is unknown, being described
only by the uniform probability density function shown in Figure 5.5 and
that £(s) is a step input.

to+4

pa)

Figure 5.5 Uniform Probability Density

In order to specify W , we solve for both the optimal error and the
optimal control, The Wienelg-Hopf equation which must be solved in order to
determine the error which minimizes the expected value of the performance

index is
—’+z—:{—’.=—} e _BE{_’T} =3
r ww/ |° ww
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Since
_1_ =~Sz+dz,
ww
1 2 2
E{—— =f-s +4 a)da
WW} _m( ) p(a)
=-s5%s E{a"'}.

4 2
/7
E(a’*}:/aza’a:a?j’ =?

/ . 7
S E{—— = -s?e L
{ww} 3

2 (~s+1.527)(s+1.527)

The Wiener-Hopf equation becomes, after letting % (s) = /s
7 / / 7
e, L, - _ecl
l:s + 3 + r] eo p ( S 4+ 3)
1 7
[(s+e)-5+l]e, - (’SZ*?)

*
Let Ca S+ C{
eo = —_—

i

F

or

"
L\

(5-7)

s(s+e)

where Co and C1 are unknown coefficients and substitute into Equation 5-7:

(~s+w)(Cys5+Cy)~ (-5*+ 5

S = %(s) (5—8)

o . .
In order for J.: 3(t)e,(t) dt =0, itis sufficient that the numerator on the left-
hand side of Equation 5-8 be zero for s = 0 and s = @ , (Refer to Appendix B
where the case for which %(5) = constant is discussed.)

7/3

I

At s = 0: «C,

c1 = 7/3%
As s » oo, - Coz must equal -s?.
Therefore,
c, = 1.

1

In finding the optimal error, a direct method described in Reference 9 is
being used.
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The final result is

S+ —
e, = - 3%
s(s+w)

Notice that this result gives @(S)=(04' 773%/ , which is analytic in the left-
half plane. Hence the € given is the optimal one.
It is important to note that one may employ a root square locus anal-

ysis (Reference 2) on Equation 5-7 to find the optimal closed-loop roots. This
would be done for a more complicated example, but it is not at all necessary

for this simple case since
o = +..,_
Vo7 (5-9)

We proceed now to find the optimal control by solving the Wiener-
Hopf equation

g

l—_,-J,E{WW”uG-QE{W} =% (5-10)

This will turn out to be a more difficult task in which one is confronted with
the task of analyzing Laplace transforms which are transcendental functions

of s,

The first task is to evaluate the

E{WW}=E[—_——S7,;—;7}

2
® pla)da / da
- -5%2+a? = ) -5%+at
Thus
_ / s+a|? / s%1s5-2
E{WW|=~-5= In =-—Un -
} 25 5-a |, 2s s2_s5-2 (5-11)
Using the series
Gy = 2| X1 +_/_{x—r)3+~/_ %-7)5+
%+ J{x+1 5\ xet (5-12)
valid for x > 0, one obtains
— 1 S ! S 3 ! S 5 SZ*S-Z (5 13)
= - — —_— _ = > -
E{WW} s[sz—z ¢ 3(52-2) +5<s2-2) *:I v | s?.s-2 0

Checking the series, it is found that the first two terms afford an excellent
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approximation to the log function and one may use

[(s+1.385)%+(28%)%] [(-s+1.385)%+ (283)*]
(s+/7°)3(-5+)7)3

Notice that the /2 is the geometric mean of the density function.

E{wif =

!
The next task is to evaluate E {_ 5+Q] :

2
1 da -5+ 2
E = f —‘-’_lrb,*Sf-a,lz = _'__l (5—14—)
~-5+a , —S+a 1 -s+/
Using Equation 5-12 gives
1 A 1)3
E!s+a}=2[ 23 * (2)33 oo
- -5+ 5 3 (—s ‘5
112
f [1 () ]
= 3 * 5\2
-5+ 7 3 (‘S * —Z—)
2_ 9.333
- / §°~-3s5+ 7
_5""32‘ s?-3s . -3—
3)? 2
or { { } . ! -5+ =] +(.289)
E = 2
- 3 2\2
s+a $+7 (—S +_)
The Wiener-Hopf equation for the optimal control is now
v+ [(5*“"335)24(-»383)2][(-5*7-385)2%285)2] - E[ s* (289)] =73 (5-15)
3 E - B
(s+/27)*(-5+/Z)) (s+-——)
The root square locus for this system, plotted as |s| vs relative

damping in Figure 5. 6 shows that for values of 1/r of approximately one,
the equation

(s +1.385)% + (.283)2=0
defines two of the optimal roots of the system,

Solving for the optimal control, using the equation (Reference 9)

A
u,o-Y v |,
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YYu,-G =73
one finds, when 1/r = 68/3, for example,

where

(5-16)
(5-17)
(5-18)

+
B ATy —_—
ol S o
SN v |0
IR R +7/
+Z+ o |+
i) 0
3_28 —
" ———
+ |~
n ! 4 ~
~Jw \w
[ | RN n%)g
o2
N
SR R
+ + + (-
R » |9
pA ~— M
L=< Sy
EN <
6_35. e
S— —
w
~L ————————
? s
I el3
o »n |\
+
W/ nﬂl, w
o N ~1
L2
R N
- &le N
) MW ¥ Ry <+
T I Sl IX I
l2 35
-~ <
N K ol o
+S¢.r/|\_ I
N e N
= S 1l
D g
= \3 )
9 + =
-+~ n
0 N
~ n

w, =
Thus

since

ONIdWVa

JAILYVIY

Figure 5.6 Root Square Locus for Example 1
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If p(a) had the form given in Figure 5. 7,

2()

73 a —

Figure 5.7 Delta Function Density

the optimal compensating network would have been

(4.53)(s+ /75
(5+7)ss) (5-19)

It is apparent that there will be no essential difference between the
closed-loop system which uses the compensation network given by Equation
5-18 and the system using the compensation of Equation 5-19. That is, the

parameter uncertainty was not enough to cause any drastic change in the
compensating network.

Illustrative Example No, 2

It is fairly obvious, from the first example, that the order of the
compensating network will increase as the information concerning the system
becomes more '"distributed''. This is not a surprising result and we expect
it to hold true for all realistic density functions. To illustrate this, the
optimal compensating network for the density function of Figure 5.8 and the
open-loop system of the previous example will be found.

(4/5)

(a)
P (1/5)

N —

a —»

Figure 5.8 Density Function for Example 2
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The various averages are:

{——} —_/w< 2rat)| 3 5015 5(a- Z):Ia'a B A

_ 0o [_/ §(a~/)+—4 5(&-2):] da _ sl 8
E{WW]::/; cl _55:z-l»a,Z = (—s‘+1)(—:244)

-7 © [% 5(4-7)+—4 S(a-z):]a’a - _g_
E{W} ‘_\[o '35+a T (s+1)(-5+2)

The expression for the optimal control, when ® = 1/s, becomes:

ey |,
(S +/>(—52+4) 0

Ifr=2/15:

s+12)

75(
2 =
sCs+1)(-5+2) £/

[ (s+4.285+4)(5%4.255+4) :l u
[/

(s+1)(s+2)(-5+1)(-5+2)

The optimal control is

_ 225(5+7)(5+Z)
© 7 5(5+3.333)(5+1.2)

The Wiener-Hopf equation for the optimal error is:

[7.5+ s"w—)}e- l:sz,u;_—j =,

!

2, 17} o
(—54—3.3)(54-3.3)80—?(— +?) =3,

Let _ as+b
% = s(s+ 3.3)

Then
2 17

(_“3,3;(&5?)-(-5 %) = %

7
Let s=0 33b-/

217 = g03
6.5

(5-20)

(5-21)

(5-22)

(5-23)
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Everything is well behaved at s = 4 o if - as®+s?=0.

Therefore a = 1

5+ 103
and e = -
°  s(s+33)
W, = % 2.25(s5+1)(5+2)(§)(s+ 3.3)
e = =
€, 4(s+3.333)(s+1.2)(5+ 103)

S+ 1 sS+2 ( 5+3.3
- Z25(5+L05 5+L2) s+5333)

(5-24)
If p(a) had been as given in Figure 5.9,
(1)
7@
2 a —
Figure 5.9 Alternate Density for Example 2
the optimal compensating network would be
7 (s+2)
W, =—2 =222 —— (5-25)
e, (s+1.18)

which is very similar to that of Equation 5-24.

The importance of this simple example should not be overlooked. It
indicates that if one can feel justified in approximating a given density function
by a weighted set of delta functions, no additional analytical difficulties will
be experienced in solving for the optimal compensating network than would
occur in the completely deterministic case. Moreover, it is seen that the
order of the optimal control expression increases by one for each additional
delta function which is added to the approximation of the true density function,
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In addition, all the optimal theory tools such as the root square locus and
Bode plots (Reference 2), can be brought to bear on the problem, giving the
engineer a clearer insight as to the effect of any particular uncertain coef-
ficient on the system's performance.

Illustrative Example No. 3

One intuitively feels that the more realistic density functions for de-
scribing uncertain parameters in real physical systems should monotonically
decrease from some peak value and go to zero for two finite values of the
argument. That is, they should have a form such as that shown in Figure
5.10 where the peak value occurs at a = a, and the density function is identi-
cally zerofora 2 a,anda £ a,. A prolbable density function which satis-
fies these requirements and, in addition, does not introduce excessive analy-
tical difficulties into the problem is the '"Beta' density function., This func-
tion is described by Equation 5-26.

pla)

ﬂo al az CZ —

Figure 5.10 A Nonuniform Density

A(a'“o)b(az'd)a’ 2, £ a £ 2,
a) =
Pl 0 elsewhere (5-26)

The scale factor A is obtained by integrating the density and setting the re-
sult equal to one. That is,

4,
/ pla)de = 1.
Thus a,

A = F’(b+ e+ Z) (5-27)

[—'(b+1) f_'(c+/)
In addition, the peak of the density function occurs for
ba, +ca, (5-28)
2 =
! e+b

For illustrative purposes, letb = c = 1, a = 1 and a,= 2. The

71




IH-2089-F-1

density function becomes

pla) = 6(-a%+3a-2)

(5-29)
Using the system of the previous problem the various expectation
operations yield (again let £ (s) =

=1/s):
W2=E'[W]=E_{ ! }

e

3
2
-S+a

_54.2

2
E {_\'\—/%}= E [~sz+az} =-5%+2.3

_ 2 2,s.
E{WW}=E{.SZia2}:‘é*9L” _ZZT: * Ess;é) Zztz (5 -30)
The series given in Equation 5-12 yields the following approximation
for Equation 5-30: 1 _
E [—s%al } =Wy
where
W =

(s+.3527)[s%+ 2(.9994)(1.501)s + (1.501)% | [s% 2(8992)(2.088)s + (2.088)%]
1

(s+/2°)3(s+/572)%

(5-31)
With this information one may follow the analysis procedures used in
the previous examples to show that

- - (5-32)
where -/ !
@ = Z3+r

results from the solution of the Wiener-Hopf equation

e ol e e fim] - n

The equation for the optimal control is now

! - r = (5-33)
l:*rwfwl}“o'TWz:%
The root square locus for

1 —
f+5 W,W, =0
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is given in Figure 5.11. It is seen that when 1/r = 10 the equation

[s2+ 2(.9994)(1.501)s + (1.501)* [s*+ 2/.8992)(2.088) 5+ (2.088)* ]

@, = 1501 w, = 2.088
=0
4 = .909¢ 7 = ,8992

i

I

it

defines four of the roots of the optimal control. Rewriting Equation 5-33

as —
2k, I M
DD ¢ s D, = %>

for which the solution is

U = D’ [ (’/r)NZD’:]
A sD, A v

K s+ Z)(s+J572")°

2,088 W, = 1.501
.8992:] [g =.999J (s+.43)(s+5)

when, for example, 1/r = 20

one finds

)
w
1
w £
[ "

y [ " 7,5, } | sl |,
- D, & s -0 (—2—)(7.507)2(2.083)2(-43)(5) o
and . 10.6 (s+)Z)? s+ J5T5)? (5+ 4.72)
(A = 2.88 1.501
(s+.43)(s+.488)(5+5) [ } 8992} [g 9994}
since s +0.288
S = 5(54- ¢.7Z)

when 1/r = 20.

(5-34)

(5-35)

(5-36)

Thus the Beta density function forces the use of a filter which is
higher than that found for the uniform probability density function (compare

Equation 5-36 with Equation 5-18).
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The single control variable theory is, however, of more than just
academic interest. One specific problem to which it can be applied directly
is that of controlling the bending modes in a flexible booster where the only
control available comes from the gimbaled engines. In this example, trans-
fer functions obtained from Appendix A will be used. These are listed at an
appropriate point below.

The performance index will be
2v = [{ale)-0, @] +r8, ot (5-37)
0

and will pertain to the block diagram of Figure 5,12,

L 7\ /3 c arz ¢ft’ ¢oa ¢¢
* Be @

v

We

Figure 5.12 Booster Block Diagram

In Figure 5.12, Dr / B, is the transfer function which relates the
rigid-body pitch angle ( @, ) to the gimbal deflection ( &, ).

It is to be assumed that a position gyro is located at x meters and
that the pitch angle sensed by this gyro is given by the equation
n
’
Pos. = @, = Ce- § Y
where. Y/  is the slope of the ith bending modes and 7, is the ith normal

4
bending mode. For the purpose of this study, it will be assumed that

B, = Bo-V, 7, (5-38)

It is not our intent, in using Equation 5-38, to lightly dismiss the important
effects of the higher order modes. However, our primary purpose here is
to examine the nature of the solutions and for this reason we restrict our-
selves to only the first bending mode.

At any rate,
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The Wiener-Hopf equations which must be solved are:

[r+qE[WW}]ﬂCo-ng{W} =3

(5-39)

and

f
[qu {W—W” O, - F =2, (5-40)

where /3% optimal control

By

The compensating network is then
Wy = Lot
a = @,

(<4

It will be assumed that everything is known except the value of Y, ' ,
which is described only by a probability density function. This is actually
very close to the truth for a numerical analysis of the equations of motion
from which the ¢/,Gc and 7, //, transfer functions were derived indicates
that Y,’ is the one factor which dominates the uncertainty in the W transfer
function. At the most forward possible instrument location on the booster
(x = 122.5 meters), the data listed in Table 4-1 indicates that

. optimal output

Y=o .123 2 25%

It is now assumed that all the values within this range are equally probable
and described by the uniform probability density function of Figure 5.13.

(Note: the density in Figure 5.13 is actually based on ¥, = - . 123 % 35%).
f
2(v)
1
©,- o,

{

|

|

% -.;|zy % yf, -

Figure 5.13 Probability Density Function for Y,'

The numbers of interest are

@, =-.08
c, =-.766
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and { !
o, - o, .086

Other numbers of interest are:
E{v/}=-.123

[E{v,' }]Z= 01513

E{(\f’)z] = 0157

The geometric mean of the density function is (- 166)(-.08) = .11524

2
Thus, the [E { Y, }] is, to 5% accuracy, equal to E {(Y,’)Z}

As a first task, we elect to solve for the optimal control, ﬂco . The
Wiener-Hopf equation is .
[mqg{ww}]p’co—ﬁqe{w} -4
_ Py Be NI
W = — F — Ty ——
Be e (5-41)
Let ¢g _ N’ n n, ) Nz
e D Be D

For convenience, these transfer functions are listed here (refer to Appendix
A)

s s \2 2(005)
Be . ~CM4 (.074 ”)[(2.3/7) * 217 3”}
(s) =
2, D

S -] S
T - 9’8(‘.0_47”)(“—.454 ”)(,4—9@”)
Be D

2
N
.042 242 294 179 2.32 2.32

(5-42)

Since
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welind NN =Y (NN, + N, Ny )Y N A
WW = g
D
and o NN e[ HF, Ny N R ) E{ ()2 NN,
E{ww} =

DD (5-43)

The approximation is made that

(v 1" - e{tv)

— — (5-44)
- N, -E{Y, | N. -E(Y'IN
i) MEbVIM) 5 E (] )
D D
or
{ } \,T/ (5-45)
here
where L NeE(Y]A,
' D (5-46)
Also, ~ N -Y' N
E [W} = E {__,_—1__2_}
D
v E{W] =W, (5-47)
The expression for the optimal control has now become, after division by »
LAWY 5-48
[/+7W,W7:| ,66 72 W, =3 ( )
Using the tabulated transfer functions, the expression for Wl is
s\z_  2(01)
-202 —
" 0 7(0737”)[(31) Y s+7] (5-49)
)=

(.—o:z ' ’)(242 * ')(294 )(_é”) [(2—53-)2+ 3(}0;—5) s+/]

Prior experience with the bending mode problem indicates that a de-
sirable situation has been achieved. Note that the complex zeros of the W
transfer function have been increased in their natural frequency from the 2. 3
rad/sec of the ¢/B, transfer functionto 3.1 rad/sec. Previous experience
with this problem indicates that it will now be possible to introduce consider-
able damping (relatively speaking) into the first bending mode.

The root square locus for this situation is shown in Figure 5. 14%,
*Again we have used a Jog |s| vs damping plot similar to those obtained
from the ESIAC,
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Equation 5-48 is now rewritten 1in the form

N
— ﬁc -r2 =%
DD s D
for which the solution is

D 72(‘1/1")"\71
e, Z[—*;—_L

= (5-50)

If g/ r = 100, from the root locus plot (Figure 5.14),

A= (‘o%’)[(?s)z*izg‘)s’} [(z,sg)z* Z:S.’j) 5*’} ("3%”) (5-51)

The damping factor of the first bending mode has been increased from . 005
to approximately 0.12. Ignoring the secondary effects of the root at s = -360,
the remaining three roots constitute an approximation to a "drift minimum"
configuration. (The drift minimum model ideally has a pole at s = 0.)

Substituting Equation 5-51 into Equation 5-50, and of course, correctly
taking into account the scale factor when K (s) = 1/s, one finds

6, - —('49)(.(-)452 *’)(.é; ”)(/7,5 ') [(233)2+ E(”;oz_b’) S”}
e (_s [i 2 2(8) :H:(_s_z 2.12 QJ(_sn (5-52)
o ”) (z) e 2.5)+ 27 5 ”)

when q/r = 100,

The above expression is the correct one for the optimal control, even
though the Wy transfer function has right half plane poles. Refer to Appen-
dix B for a more thorough discussion of this point,

Before proceeding to the problem of finding the optimal output (@,,,.5 )
it is pointed out that the result achieved (within the limitations of the approx-
imations made) is precisely the same as would be obtained had the value of
Y ' been exactly known and equal to - .123. This is due to the fact that the
dénsity function was still sharp enough, and the effect of Y,' was not critical
enough, for the uncertainty to enter the analysis in any sensitive manner,

The next problem is to find the optimal value of @,,, 5 which mini-
mizes the expected value of the performance index., The Wiener-Hopf equa-

tion is now
5 efaaf]on -
+ I - =
q WW %0 3’ (5_53)
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! (5-54)
_— oL
f = , N, 2
- (mz—a,)DD I Yf " Na
(NjNZ“Nf Z) Y’—ﬁ (5-55)
1 NZ m’
(o25;) 5 :
B Yy DD EE-(xE+a, E)ra,, N,
= _ _ > Z , Ny
(N1NZ'N7 Ny ) gg“(“fg“ﬁzg)*“r &y Ne

Again use the series

x-1 / -1)% -1\4
hz:Z( )'jh-——(% )4-—(% ) +J (5-56)
X+ 3\ %+ S\lx+t

[ ]_ DD
to obtain E l - (¢, + ®z) ,— — —
Ny Ny + 1T (Ny Ny + Ny N ) v gy, N, N,

where
Z —_ J—
W (¢,-a,) (NyNg - N, Nyg) . (5-57)
_ @ _ —— . o o -
Since ,
___(‘”"“’) =6.2x10"*
12

we will ignore the higher order terms in the series expansion of Equation
5-57. There is a small element of danger in doing this since N, N; - N, N,
has a constant term which is identically zero and therefore the discarded
terms in the series contain free powers of s. For this reason the approxi-
mation should be checked as a function of frequency. However, experience

indicates that the denominator will, as a function of frequency, continue to
dominate.

Thus —
DD

NNy = 123 [Ny Ny =N, N, )+ . 0133 Ny N, (5-58)

«, %,

m
£ lN
X

e
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where (%*051)/2 is the mean value of Yl' = - .,123.

If the denominator of Equation 5-58 were expanded, one would see
that the effect on the coefficients of the term . 0133 Ny N, is generally small

and we may safely set
, 2
oy %y =[E{Yf ” (5-59)

For example, this approximation causes a 1.5% error in the constant term
of the denominator of Equation 5-58 .

Using this approximation, one obtains

1 |
= [ ) - 7

or

E{wiw} = E{V;W}

At this point, the problem will be terminated, since the Wiener-Hopf equa-

tion has become
r 1
‘7w | % g

and the compensating network will be the same as would occur were we deal-

ing with a completely deterministic system in which Y,' = -. 123, That is,
we may as well find the compensating network using the conventional optimal
theory.

To summarize the results of this section, the expected value of the
performance index

2V=O/[q(7\?~ By) " ”ﬂoz]‘# (5-60)

has been minimized by finding both the optimal control and the optimal output.
The slope of the first bending mode was considered to be the only unknown
coefficient in the equations of motion. The results indicate that one may
introduce a damping of approximately 12% into the lst bending mode and the
required compensation will be essentially the same as that used when a
completely deterministic system with Y,' equal to the mean value of the
assumed uniform probability density function. The density, which was as-
sumed to have a spread of £35%, was not broad enough to force the use of

a higher order filter than would normally be used.

The reader should note that while the example considered a sixth-
order system, only one uncertain coefficient was involved. However, itis
not too difficult to visualize that the mathematics would remain essentially
the same had additional uncertain coefficients been included -- namely it
will continue to use the table of integrals cf the rational and irrational
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algebraic functions to solve the problem.,

Summary

In this section, simple illustrative examples have been used to obtain
a "feel'" for the types of problems which will be encountered when one applies
linear optimal control to systems containing uncertain parameters. Towards
this end, only a single-input and single-output feedback control system was
considered.

The approach taken was to assume that the logical thing to do in the
face of parameter uncertainty was to minimize the expected value of the per-
formance index. Furthermore, the viewpoint was taken that it made no sense
to find only the optimal control which accomplishes this minimization since
one would be forcing an open-loop control law on a system which was original-
ly postulated to be a closed-loop one. It was reasoned that the best approach
to the problem was to find the compensating network which minimized the
expected value of the performance index, However, in the face of the analy-
tical difficulties encountered in attempting to solve directly for this network,
the subjective decision was made to solve for the optimal variables at the in-
put and output of the compensating filter and then define the compensation to
be the ratio of the two. The indications are that this procedure leads to a
theory which behaves in a reasonable manner as the information concerning
the system becomes more distributed. Specifically, the design procedure
forces one to hedge, by increasing the order of the compensating network,
as the density functions become broader,

The basic new features which are added to the linear optimal theory
in the face of parameter uncertainty are the necessity for the use of the
tables of integrals for the rational and irrational algebraic functions and the
problem of approximating irrational functions of s with rational ones in
order that the root square locus may continue to be of use and that the com-
pensating networks will be rational functions of s. However, the example
which considered the weighted delta function density shows clearly that this
type of density function introduces no additional analytical difficulties into the
problem. That is, the Wiener-Hopf equations which are involved will, in
general, be of a higher order than those in the deterministic case but no
transcendental function of s will be involved. Thus, if the engineer feels
justified in approximating the given density functions by a weighted set of
delta functions, the vast body of knowledge concerning the solution of Wiener-
Hopf equations can be easily modified to solve the uncertain parameter prob-
lem.

A specific application of the theory was given in the example which
considered the design of the compensating network required for a flexible
booster. It was shown that the uncertain parameter, which was the slope of
the first bending mode, did not enter into the design in a critical fashion.
Thus the resultant design would be the same as had one initially fixed the
value of slope of the first bending mode at the mean value of the probability
density function.
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Only uniform, '"Beta' and ""weighted delta functions' densities were
considered. It seems important to continue these studies for other types of
probability density functions.

It would also be worthwhile to obtain equivalent results for the multi-
controller problem. As noted in the main text, a good approach to this prob-
lem would be to find the networks which should be interposed between the
optimal controls and the optimal state variables. Some preliminary work
along these lines, not reported here, indicate that reasonable results will
be obtained. For example, as the density functions become sharper and
sharper, the 'feedback' networks reduce to the gains that one normally as-
sociates with the feedback control law «, = ~-Kz .,
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SECTION 6
THE CONSTRAINED GAIN PROBLEM

Introduction

A problem of importance to optimal booster control system design
is the so-called constrained gain problem. Briefly, for settings of control
weighting and state-variable excursion weighting, acceptable closed-loop
system response may be obtained. Once the weighting matrices are selected,
the optimal feedback gains are uniquely specified. These gains may not be
changed individually without loss of implementation of the optimal solution.

Often, some of the feedback gains specified by the optimal solution
are too large for practical application, in which case, the solution must be
discarded and a different set of weighting matrices chosen. The new weight-
ing matrices will cause all feedback gains to change, even though only one or
perhaps two were too large in the original design, and the new selection may
still not satisfy the constraints on the gain magnitudes.

" A more desirable approach to the constrained gain problem may be
to directly constrain those gains that are considered too large (in the optimal
solution) and then to determine the new optimal solution with these con-
straints imposed. Although large amplitude constraints on the feedback
gains might solve the problem, it is unlikely, in that case, that any design
aid such as the root square locus could be evolved. Moreover, the designer
might have to resort to a dynamic programming solution with its inherent
difficulties. Rather than work from the hard-constraint approach, a soft-
constraint approach was undertaken on this project. In this case, the gains
are constrained by a quadratic measure, or they are specified a priori with
the help of the usual optimal regulator solution. The objective is to carry
the analytical approach as far as possible before resorting to numerical or
heuristic approaches.

In the study conducted on this project, a number of analytical approaches
were worked out in detail, However, even the most promising of these is too
difficult to use in a practical application, and therefore an experimental or
heuristic approach was also tried. The major results of both the theoretical
and the experimental approaches are described in this section.

Theoretical Development

Approach 1
The first approach will allow an analytical solution of the problem,

which is difficult to use, and the feedback gains are apparently not constant,
It is described briefly below,
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Consider a system of the form
reFy+Gu ,y=Hy, «=-Ky (6-1)

where the dimensions of the matrices are

Y (nx1) G (nxp) H(rxn) y (rx1)
F (nxn) u {px1) K (pxn)
Let
G =[&1EG)3€ ;aﬁ]
[ w, | &, ]
e "
uw = T K = T
_u;)_ _/E_P—

where each partition quantity has the dimensions

Gq (nxi), Ug (1x1) and /dq (1xn)
Then
Gu = Gru, +Gytiy + oo+ Guup

and
The performance index to be minimized is

2\/=/[4/'9y $K S K Ky S K /stpkf;’] o (6-2)

where S,, S;,... 54, are positive definite diagonal ( » x n ) matrices. As
long as these matrices are all positive definite, the control u is implicitly
constrained. In addition a constraint on any individual feedback gain in

may be increased by increasing the corresponding values of the diagonal
element of the S1 matrix.

The performance index of Equation 6-2 may be extremized subject

to the constraints of Equation 6-1 by means of the calculus of variations. The
Euler-Lagrange equations for the extremals are

HGHy +(F =G Ky - Gy ky = - . Gykly) A A =0 ]
SyKg +u Gy =0 5 g =1,2,...,p (6-3)
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where 1 isan(n» x1 )vector Lagrange multiplier., Rearrangement yields
’ —7’a i -1 v 2 Y
HQHx + F'3 - S; 2 (GgA) + h =0 (6-4)
-1 4 . _
/gé=5¢xcq%,q-7,z,...,p

These equations, together with the equations of 6-1 can be solved for # and
% and then for each kK, . However, the feedback gains are functions
of the state variable %  so that apparently these gains will be significant-
ly time-variable. Moreover, the equations of 6-4 are nonlinear, making a

general solution difficult or impossible.

This approach to the constrained gain problem has been described
because it exhibits the difficulty of the problem. A major conclusion that
can be drawn is that the class of admissible feedback gains must be limited
to those that are constant (in solution times). If the class is not so limited,
the feedback gains will vary significantly -- a situation that may be undesir-
able for booster design. It may also be concluded that the feedback gain
constraint problem leads to the solution of nonlinear equations, whether they
be algebraic or differential. Therefore, every effort must be made to cast
the problem in its simplest form so that complexity is minimized.

Approach 2

The second approach to the gain constraint problem incorporates in
the problem statement the specification that the feedback gains are to be
constant. In this approach, it is assumed that the usual optimal regulator
problem has been solved, and that some (but not all) of the feedback gains
are too large in magnitude. The feedback gains that are too large are then
reduced to values that are at the limit of the magnitude constraints, and are
thus specified at the outset of the constrained gain optimal regulator solution.
The problem is to determine the remaining gains (those that did not violate
the magnitude constraints in the usual optimal solution) so as to minimize
the original performance measure,

Again consider a system of the form given in Equation 6-1, but assume
that the dimensions of the matrices are

% (nxq) G nxt) y(rx1) K(1xn) R(1x1)
Flnxn)  wl(ix)) Hirxn) Q(rxr)
The performance measure to be minimized is
2= [ (y8y » u'Bu)at
" / o [/-/’Q//,«/('E/d] v at

o

(6-5)

where K is considered to be a vector of constants. Some of the elements
of K will be specified a priori by virtue of the magnitude constraints. The
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remainder of the elements must then be determined in such a way as to mini-
mize the performance measure of Equation 6-5.

The minimization process is carried out by expressing the performance
index in terms of K and then setting equal to zero the expression for the
partial derivative of the measure with respect to each element of £ that is
to be determined. The Laplace transform of % (¢ is

X[ x®)]= X (ssk)=[I5-Fe K]y, (6-6)

where %, is the initial condition vector. If use is made of an extended
form of Parseval's theorem, the performance measure may be written as

Joo
! /
2V=2—rrj /X(-S,M)B(K)X(s, K)dSs (6-7)

where

B(k)= HQH+ K'RK

To obtain the extremal values of V for any given gain, the partial der-
ivative with respect to that gain is taken and set equal to zero:

aVv

oF; (6-8)
where i[ is one element of the vector &

Equation 6-8 may be evaluated by making use of the equation

9%4 [ X'(-5,6) B X (5,k))= 9—2 [X'(5,0) B, (S, &)

6-
o2 [T (-5, k) BKIX (5, K.) (6-9)
ok
2 [2'(-5,K) BIK) X (5,K))
ot;
where K, 1is equalto & , but is treated as a constant while the partial
derivative is being taken. In the derivative operation, it is necessary to
differentiate inverse matrices with respectto #; . The operation may be
performed by using the formula
2 -1 -1 (_9_ -1
%;[M | =M (g M) m (6-10)

where

M= M(S,K)=[Is-F+GK]

After a great deal of mathematical manipulation, it is found that the condition
on ‘é" for minimization of the performance measure is
|00

J
1 ’
. rr I -1 - 4 =
T /9‘ Y (5, K)X'(-5,k) [ BM (s, k)a-K'R | ds = 0 (6-11)

_J'oo
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. .t
where ©; 1isan 7 vector with zeros for all elements except for the i h

element, which is 1.

The optimal condition yields a scalar equation in the frequency domain.
Equation 6-11 can be rewritten in the form

/ J/“” 1
i, IM(S,K)|? | M(s, k)]

{ 0; N(S, k)%, %, N'(S, KBUIN(S, k) G-k "R IM(S, wl]} ds =0
(6-12)

where

IM(S, }6)’ is the determinant of M(S, /6)

N(S, k)

and N(S,K) is such that M'(5 k)= TS T

If the closed-loop control system is to be stable, then all of the roots of
IM(S,K)] = 0 in S must be in the same half plane. Similarly, all of the roots
of|M(-S,k)| = 0 must be in the opposite half plane. Moreover, if the left-hand
side of Equation 6-12 is to be equal to zero, the total integrand must be
analytic in one or the other of the two half planes. This condition can be met
if, and only if, the bracketed factor in the integrand of Equation 6-12 contains
a factor |M (-S,K)]| or two factors |[M (S, K)| . Therefore, the condition
for the optimal value of the gain ¥%; is

{ O N(5,K) %, vo N'(-5, /4)[8(/6)/\/(5, /5)@—/478//\4(5,16)/” =0 (6-13)

under the condition that

a. |M(-s,k)| =0
or

b. |M(s,Kk)* =0

One equation such as Equation 6-13 can be obtained for each feedback gain
that is to be optimally adjusted. Since the remaining gains are to be speci-
fied a priori, the number of conditions obtained is equal to the number of
optimal gains to be determined.

Unfortunately, the equations obtained are difficult to solve, except
for very elementary problems. It is possible that further study of the analy-
tical solution as given herein may yield additional simplification. Spectral
factorization, for example, if properly applied might yield a simpler ex-
pression for the optimal gains.

Approach 3

The third theoretical approach makes use of scalar differential equa-
!:1ons and previously developed tables for optimal feedback gain solution. It
1s, in some ways, a scalar equivalent of Approach 2, but is less general.
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Consider a single controller system described by the differential
equation

(n) (n-2) (n-1) ;
} . ) oA given
U=a,%+2,%+.cct+8py¥% ;%(0),..c, % (0) =0 ; %(0) (6-14)

The control variable u is to be a weighted sum of the state variables; that is,

S R0 R RS N %2’") (6-15)

Some of the %; 's will be specified a priori because they have exceeded the
magnitude constraints when the usual optimal regulator solution was obtained.
The remaining gains are to be chosen so as to be optimal.

Choose the performance measure:

00
. (n-1) 2 (1)
V=f(qo r’s 91“2*"'*971-/ AR LS RPN AP T 2 )at
o

(6-16)
(n-1)

=f[(% +71, i,1)042+(¢,+r, €952 .., (qn_, $r,, %n_’z) ) z]dz‘
o

where the ¢, 's and 7, 's are non-negative constants,

If use is made of Parseval's theorem, the performance measure may be
written as joo
1

n-1 . 4
" /[Z, (-0 (g, + 1 ;%) S“x(S)'%(-s)J ds (6-17)

-J'w
where %(s) is the Laplace transform of %(¢)or % .

The performance measure may be written in the form

Jjoo
i % o / 9 (5) (6-18)
Y= 2, [ ¥"]* 2T ) ha(5) Ry (-5) Is
where " Kk
gn (s) = Z=‘ (_,)‘ (q£+ 7 %L, Z) 52/
and

%, (s) = (dofia)»‘(d,,t E)s + ...+ (a,,_,+‘£n_,)s""+a,,, s”

The performance measure is now in a form that may be evaluated using the
tables of Appendix D in Reference 8. These tables do not require the factori-
zation of the numerator and therefore are well suited to this problem,

Once the performance measure has been evaluated, it may be mini-
mized by partial differentiation with respect to each free gain £, and each
result set equal to zero; that is,

av;

ot

P2

=0 ; 0< ¢ £n-t (6-19)
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Once again, one equation can be obtained for each feedback gain that is to

be optimally adjusted. Since the remaining gains are to be specified a priori,
the number of conditions obtained is equal to the number of optimal gains to
be determined.

All three of the previous theoretical approaches are very difficult to
use in practice when the order of the system is greater than three or four.
The booster design problem, when bending modes are considered, is of
considerably higher order than third or fourth. Theoretical approaches, such
as those developed herein cannot be considered as adequate for solving the
booster constrained gain problem because they are too complex.

Experimental Solutions and Applications

To obtain a practical solution of the booster constrained gain problem,
it is apparent that one must resort to heuristic programming methods. In
this case, one performs a systematic search for the minimum value of the
performance measure. Either a digital or an analog computer may be used.

An experimental study was performed on this project to determine
the usefulness of a given heuristic method. The dynamics of a booster con-
sidering actuator and one bending mode were programmed on an analog
computer. The optimal regulator feedback control system and the computation
of the performance measure for return from an initial condition were also
programmed. The equations of motion and performance index used are given
below:

.7 | 1 7]
Q@ 0 1 ) o) 0 0 0} 0
@ 0 0 .0733 o 0 45 | | @ 0
0 -.0405 1 -.0107 0 0 -.021 o 0 p
= +
7, 0 0 0 a 1 0 1, 0 ¢
7, 0 0 5453 -537 -.0232 1583 7, 0
/éj 0 0 0 0 0 -179 B 17.9
- - Tyl Ll (6-20)
[o -]
- z 2
2V = /[.07(30@;%) +ﬁ: ]g’f (6-21)
(o}

In order that minimization of the performance measure might be accom-
plished, the computer was switched to the repetitive operation mode, Then
the feedback gains were adjusted until the final value of the performance
measure was minimized. Each parameter was adjusted in sequence until
there was no visible further reduction in the performance measure.

Initially the computer was programmed for the usual optimal regu-
lator configuration. A check of this condition on the computer showed the
analog computer values for the feedback gains to be very close to those com-
puted by the Ricatti equation solution. After the optimal regulator problem
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was programmed, one or more of the feedback gains were arbitrarily reduced
in value and the remaining gains were readjusted so as to minimize the per-
formance measure. In this way, optimal solutions with constrained gains
were obtained. The details of the various experiments are described below.

In the first experiment, the feedback gain from the state variable

@ was constrained at various values. In the unconstrained condition, the
value of feedback gain from @z is -3.74. Accordingly, solutions were ob-
tained for ¥, = -3.74, -3.00, -2.50, -2.00, -1.00, and -0.50. Table 6.1
lists the optimal feedback gains for the various values of constraint on £, .
It is seen that there is little effect on the other feedback gains when ¥, is
constrained. However, the locus of closed-loop poles is heavily affected by
the constraint on %, . This locus is plotted in Figure 6.1 for each value
of %; . The locus shows that the major effect of the constraint on the opti-
mal closed-loop system is to reduce the damping of the resonant pole pair
associated with the rigid-body dynamics. There is little change in natural
frequency of this pole pair. Additionally, the damping of the bending mode
poles is decreased somewhat as %, becomes heavily constrained. The re-
sults of this experiment show that analog computer solutions for the optimal
gains under constraints produce accurate results. There is little deviation
of the locus of closed-loop poles from the smooth curves of Figure 6.1.

The second experiment involved constraints on two feedback gains.
First the feedback from the actuator state variable /4 was set to zero,
thus %, = 0. Then the feedback from g , thatis, %, , was again con-
strained at various values. Table 6.2 contains the optimal values of the re-
maining feedback gains: ¥, , ¥ , €,, and ¥, . It can be seen that the
feedback gains are affected to a slightly greater extent when %, = 0 than
when it is optimally chosen. Once again, the locus of closed-loop poles is
greatly changed as a function of the constraint on ¥; , as is seen in Figure
6.2. Both the damping and the natural frequency of the resonant pole pair
of the rigid-body dynamics are reduced. It is clear that the lower values
of %, produce an optimal solution that has low damping of this pole pair.
In addition, the damping of the bending mode poles is decreased for low values
of #%; . The locus, again, fits smooth curves accurately.

TABLE 6.1

OPTIMAL FEEDBACK GAINS WITH CONSTRAINT IMPOSED ON iz

RUN NO. #, %, £, %y 5 £,
= T 98 =374 370 0653 07716 3T
2 -1.96 -3.00 -.370 0684 0242 . 094
3 -1.84 _2.50 _. 368 0712 10239 083
4 -1.93 ~2.00 . 364 . 0656 . 0270 104
5 ~2.02 -1. 00 -.369 L0663 . 0191 124
6 -1.98 0. 50 -. 364 . 0684 L0147 129

*No constraint on 7&2 in Run 1,
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Figure 6.1 Optimal Closed-Loop Pole Locus

as a Function of the Constraint on %,
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Figure 6,2 Optimal Closed-Loop Pole Locus

as a Function of the Constraint on £, (#; = 0)
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TABLE 6.2

OPTIMAL FEEDBACK GAINS WITH CONSTRAINT IMPOSED ON ¥, ,
AND ¥, SET TO ZERO

RUN NO. \ﬁf \éz i3 £¢ %5’ £4
& -2.54 -3.62 -.376 . 0658 . 0203 0
8 -2.33 -3.00 -.369 . 0696 . 0208 0
9 -2.20 -2.50 -.369 . 0708 . 0230 0
10 -2.10 -2.00 -.367 . 0754 . 0249 0
11 -1.99 -1.00 -. 361 . 0755 . 0224 0

*No constraint on tz, in Run 7.

The third experiment was similar to the first, except that fj was
constrained instead of %, . It was noted in obtaining the previous solutions
that the value of the performance measure was very sensitive to the setting
of ‘é3 , which is the feedback from the state variable, &« . Therefore, one
would expect large changes in the gains and in the closed-loop locus when
%5 is constrained. These large changes do, indeed, occur as Table 6.3
and Figure 6.3 show. All five remaining gains undergo large changes as

ig is constrained. The value of ¥, changes sign. The resonant pole pair
associated with the rigid body has a greatly reduced natural frequency, al-
though the damping is not changed significantly. Moreover for the bending
mode poles, the damping is reduced slightly and the natural frequency is in-
creased slightly. It would have been desirable to obtain more solutions for
larger constraints on %5 , but this would have required complete rescaling
of the problem on the analog computer,

TABLE 6.3

OPTIMAL FEEDBACK GAINS WITH CONSTRAINT IMPOSED ON ]&5

RUN NO., \61 £, E3 ‘égz fa— %2,
IS -1.98 -3.74 -, 370 . 0653 .0216 . 131
12 -0.49 -1.66 -. 300 .0643 .0158 112
13 -0. 37 -1.19 -. 200 .0160 .0115 -.017

#*No constraint on ‘ﬁa in Run 1.

Conclusions

The studies of the constrained gain problem that have been performed
on this project have made certain aspects of the problem clear. First it can
be seen from the complexities of the mathematical approaches that analytical
solutions are of little value at this time, If the problem is expressed in its
simplest form, a set of nonlinear, simultaneous algebraic equations must be
solved. Since there are no general methods for solution of these nonlinear
algebraic equations, the analytical solutions are too difficult to allow straight-
forward solution. It is possible that certain specific solutions could be worked
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Figure 6.3 Optimal Closed-Loop Pole Locus

as a Function of the Constraint on ia

13]




IH-2089-F-1

out by substitution and tedious computation, but these methods are not recom-
mended for high order systems.

In order that heuristic programming methods might be evaluated in
regard to application to the constrained gain problem, a sample booster prob-
lem was programmed on the analog computer. The performance index was
minimized without difficulty when various gains were constrained. When the
usual optimal regulator solution was used as a starting point, and one or
more of the gains were gradually reduced so as to approach a desired con-
straint, a minimum could be found. No problems were encountered that
could not be traced to the computer itself or its scalings.

It is clear that in some cases no constrained gain solution exists.
For example, if the vpen-loop system is unstable, it may be possible to con-
strain one or more of the feedback gains (in magnitude) in such a way that
there is no stable closed-loop solution. Physical reasoning will generally
make the designer aware of such situations, and of course, they must be
avoided in any heuristic programming method.

The experimental study has demonstrated the feasibility of developing
a digital computer program which automatically performs a systematic
search for optimal constrained gain solutions. A strategy could be developed
for adjusting each parameter until the performance measure is minimized.
If the program uses initial gain settings taken from the usual optimal regula-
tor problem and then gradually shifts the constrained gains, an optimal solu-
tion can be obtained for most practical cases, The program could be developed
in such a way as to accept matrix equations of motion and arbitrary quadratic
performance measures similar to those used in the usual regulator problem.
It is recommended that such a program be developed, since it may solve
most constrained gain problems effectively and easily.
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SECTION 7
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

1. Linear optimal control and associated matrix techniques can be used
in a systematic and effective way to conceptually design satisfactory control
systems for large, flexible launch vehicles.

2. The use of models in the design procedure simplifies the selection of
suitable quadratic performance indices.

3. The optimal feedback control law for the flexible launch vehicle can
be obtained in a direct, straightforward manner, not requiring the solution
of a matrix Riccati or Wiener-Hopf equation.

4. The control law can be expressed in terms of quantities sensed

on the body of the vehicle. The selection of the sensors and their locations
is an important design consideration, for the feedback control law may not
be realizable in all cases.

5. The optimally controlled system appears to be insensitive to variations
of the bending mode shapes and slopes.

6. Optimal compensation networks can be specified for systems with
parameters whose values are known only as random variables described on
a sample space,.

7. The ""constrained gain' problem is difficult to solve in an analytical
manner, However, it appears that solutions can be experimentally obtained
quickly and easily using an analog or digital computer.

Recommendations

L. It has been demonstrated that linear optimal control techniques can

be effectively used as a design tool to conceptually specify satisfactory feed-
back control systems for flexible launch vehicles. The techniques are rela-
tively new, however, and all the unique aspects of the methods have not yet
been investigated. In essence, the wealth of experience and background in-
formation collected for conventional design methods over the past three
decades is not directly available to the optimal control system designer. A
more measured and deliberate pace is therefore required when using optimal
design methods. However, because of the promise and progress that these
techniques have shown, optimal control studies for application to the flexible
launch vehicle control problem should be continued.

2. Optimal control law synthesis problems should be investigated in more
detail. Other control law approximation techniques should be studied with
the objective of defining the extent to which approximations can be made
without causing an unstable configuration.
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3. The results concerning parameter variations are promising. A
more thorough investigation should be conducted to extend the theory of opti-
mal design of systems subject to parameter variations.

4. One of the important results of this study is the experimental deter -
mination that the optimal system is relatively insensitive to variations of
the bending mode shapes and slopes. These results should be placed on a
more firm theoretical basis for the elastic launch vehicle.

5. An investigation of the constrained gain problem should be continued.
Relationships among the parameters in the performance index and the magni-
tudes of the feedback gains should be established. Relationships that exist
among the closed-loop dynamics of an optimal system with one or more feed-
back gains fixced and with a preselected performance index should be established.
A digital computer program may be the solution to this particular problem.
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APPENDIX A
EQUATIONS OF MOTION AND TRANSFER FUNCTIONS

The equations of motion used throughout this report were extracted
from a Marshall Space Flight Center memo labeled '""Model Vehicle No. 2
For Advanced Control Studies'. The portions of the memo that are used in
the body of this report are included in this appendix. The simplifications
that were made are described and the pertinent transfer functions are in-
cluded in this appendix.

The rigid-body coordinate system and the first elastic model geo-
metry are shown in Figures A.1 and A.2, which are reproduced from Refer-
ence 1. Using the nomenclature of thesc two figures, the equations of motion
are

Pitch Acceleration Equation

.. N2 F4, 4(F-x) S ,
G, 279 o .3 fyl. - 9y -—(—)—E Y, 7
I y (| I 4 (24) I, (24) m I, (24)

L4 “lchE+IE e 4/:'-)( E +Qlcg 5 -0
Ifj n Ig I{/

Flight Path Curvature Equation

. F-X . N Ja e’
- - ——— 4 =
o m Prar mv & mv%;‘\f (/AY. g 0

Bending Equation

in -. . 2
- " N, + L%, 7, + @y ~ ~;

where

96’?44

QL'N =§ (gAx) X, (Ayn)ﬁ()(n)

”
M, =2 mﬂ‘,- {\/1 )2

r)

QL = 72 ﬂy 8 +(SE »/l(abﬂ) +IE »‘{’U/g) )ﬂ
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Figure A. 1
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Figure A.2 First Bending Mode Geometry
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The engine-actuator dynamics satisfy the differential equation

B+ 2578 + 22594 131,150 B = 51,130 /B,

In addition to the equations of motion given above, the following
subsidiary equations, which define the quantities measured by an attitude
gyro, a rate gyro and accelerometer are used,

Output of an accelerometer
N F F-X 2’
e, =L G+ —a+l Y, j-J|l—y Xy =
i A P m ?’ I(x;) %; %lim Y(xg) Vi ) (/e p
Rate Gyro

é’%é = de h Z Y,’ 7._,'

%))

Attitude Gyro

Py, = Pe - )J: K’”Z'

A J

The entire analysis in the report is performed at a fixed operating
point during the boosters' launch trajectory. The point chosen was t = 80
seconds along the nominal trajectory. This operating point is within two
seconds of the maximum dynamic pressure condition.

A number of simplifications and approximations were made to elim-
inate the minor terms in the equations of motion, when these minor terms
add little in the frequency range of interest., The simplifications are:

i. The actuator and engine dynamics were approximated by the first-
order equation

B +17.98 =179 3,

The constant 1/’2‘ = 17.9 represents a first-order approximation to the fre-
quency response and phase characteristics of the third-order engine dynam-
ical equation.

2. The inertia of the gimbaled engines is small compared to the total
inertia of the vehicle, therefore 4 [ﬂcg Se ‘Ie]_ 0
e
Y
3. The pitching acceleration due to engine reaction force is amall com-
pared to pitch acceleration due to control forces, i.e.,

Q"lcg - X SE 4 F-X Sg
I >> 4 — , therefore — 7T = 0.
g mo I ” v
4. The incremental pitching acceleration and normal acceleration
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caused by vehicle flexibility are negligible.
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Therefore,
7
- % 5
mV

Using the data given in the Model Vehicle No. 2 memo and using the
assumptions given above, the equations of motion of the launch vehicle at

t = 80 seconds were found to be

Qsﬂ 07330 +.458=0

- Qo+ 0405 Bt & +.01067a +.021063 =0

A+ 17298 =179 8,

-5.453 +;g,+ ozamg‘ +56.37y,-158538=0
-2.36a v 7, . .0564 7, + 318y, -22.773 =0
-Ilé’mnz * 0918y3+84-25'7 -262543= 4]

pitching acceleration equation
flight path curvature

actuator dynamics

Ist bending mode

2nd bending mode

3rd bending mode

Most of the conceptual design work reported upon in the body of this
report included two bending modes in the equations of motion. During the
course of the design work, certain transfer functions were required. These
transfer functions, which include only two bending modes, are given below:

5]
‘2.14(/‘/"‘?/—4—,—) [,1‘

2/.005} ‘} [ 2(po5) s, s¢ ]
7377 "2 3/7)2 5639 (5.639)*

E— (s) =
- S S . 2(.005) s? :] |: . 2(005) sl }

£ (s) = 6'14(’ '040“2)(“27-4/)[’ 2517 > (2317)? I* 539 °* (5.639)%
ﬁc D32

_ S S 2(.005) 52
oy (s) %18 (7 - .04082)(7 ) .4543)(’ +.4986) ‘:7* 2.317 >t (2317)2 :|
pc Dgz

i . 2(.005) . S
& (s) = ”7(".0412)(/ 3194){/ 3497) l:” 2.317 W:l

[ DBZ

s s 5 2(.005) 52 2(w5) s
B - "O(".04;75)/”.24/7)(/*.2942)[" 2317 s*(z.m)z] [7+ 5639 0 (6-.459)2]

e

DBz

s s s
DF; () = (“ 1'7.9_)_{/*.2942)(/'.24/7

I+ )l:h 2t00s) s | 2(008) s?
+ + + S o A i
04175 2,317 (2317)% 5639 +(o‘.eso)z
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APPENDIX B
THE WIENER-HOPF EQUATIONS

This appendix discusses the derivations which are pertinent to the
theory contained in Section 5 of the report. First, a brief review of the
derivation of the Wiener-Hopf equation, which specifies the optimal control
will be given for the case where the plant is precisely known. In the deriva-
tion, the effect of having a plant with non-minimum phase components will
be emphasized and then an example will be given to demonstrate the various
aspects of the problem. After this, the Wiener-Hopf equation which defines

the optimal control that minimizes the expected value of the performance
index will be derived.

It seems necessary to carry out the proofs for only the optimal con-
trol. Those readers who are interested in deriving, for example, the ex-
pression which defines the optimal error may mimic the procedure used
for finding the control. The one difficult problem which seems to affect the
optimal error theory to a greater extent than it does, for example, the opti-
mal control theory, is the point of whether or not the sufficient condition for
a minimum is satisfied when 4(s) is a constant. This point is considered at
an appropriate point in the development.

The Optimal Control in the Deterministic Case

Consider the block diagram of Figure B.l

14 e u y
+ Wa W o

Figure B.1 Closed-Loop System
In Figure B.1, W represents the fixed elements of the system.

The performance index

- Z
ZV—o/(e crudt .

in which r is the positive weighting on the control, is to be minimized by
solving for the optimal control.

Equation B-1 can be rewritten in the equivalent frequency domain

form joo
1 - _ _
2V = Ty / ((@-W“)(E—Wu)v‘r‘uu}ds (B-2)
since e

y(s) = W(s)u(s) (B-3)
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In Equation B-2, W = W(s), and W = W(-s), etc.
One now takes a variation on Equation B-2 by letting
U =U, + du, (B-4)
where «, is the optimal control and «, is physically realizable, but other-
wise arbitrary. (If this derivation were carried out in the time domain, it

would probably be more evident that the minimuzation procedure also requires
that &, 4.,y = % (4ue) = 0.) The result is

2V =T+ (T, +3.)+ 2%y (B-5)
where 1o
Jo = zﬂf-d- d, [(E-Wuo)(ﬁ-\?&'o)wtru, E,,}ds
Joo
3, - —Z—IITJ,—_J‘I/OQ{(r+WW)Eo~Wﬁ}a,ds
joo
Je = 2’—773 :J/w{(ﬁ WW)uo-Wﬁ}u, ds

! — -
T =3 /w{(mww)w, u,}a’s

J, is the optimum value of the performance index, J4 > 0 and J, = Jp since
Jp (-s) = Je {s). From this it follows that a necessary and sufficient condition
for u, to give the lowest value of J is, for arbitrary ¢, , J, = 0 (see, for
example, Reference 4).

Thus one must consider the equation
joo

/ / o]
277 J,, {(r+WW)d4—W79}LL,0'5 (B-6)

in which all the poles of %, are in the right-half plane. It is at this point that
care must be exercised because one is tempted to say that a sufficient condition
for Equation B-6 being identically zero is that all of the poles of the expression

(r+ WW )u,- W R
must also be inside the right-half plane when the path of integration is com-
pleted to the left. This sufficient condition is usually expressed as
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(r+ WW)a, - WR =4(s) (B-7)

where 2 (s) is analytic in the left-half plane and, moreover, it assumes that
the integrand of Equation B-6 has a sufficient excess of poles over zeros such
that the integrand is forced to zero along the left-half plane contour. Equa-
tion B-7 is a scalar Wiener-Hopf equation for which one will obtain the correct
answer by requiring that 2 (s) have right-half plane poles only when W(s) is
minimum phase. In the event that W(s) is nonminimum phase the correct
sufficient condition is

X7 [5(9)] = 44 =0 hrt 20 58

for then
00

Joo
/ 77 =
77_{/ (}(S)M,dS—/?(t)u,(f)a’z‘ (B-9)

...jw 0

is identically zero. The basic difficulty is due to the fact that, when there are
poles in the right-half plane, W(s) has an impulse response which goes to o0
as t - oo while the impulse response associated with W(-s) goes to @ as

t = - oo , The danger exists that one will attempt to solve the problem in a
manner that identifies all right-half plane poles with time functions which
exist only for t < 0. Clearly a right-half plane pole can also represent an un-
stable system for t 2 0 and one must be careful to associate poles with the

correct type of time function. Taking these precautions, one may now rewrite
Equation B-7 in the form

E’D:ﬁJ-Nﬁ_] N
DD b-HR =3 (B-10)

where
w= 2
D

D represents the open-loop poles of the system and will contain right-half
plane poles when the open-loop system is unstable. Nevertheless, the time
function associated with D is identically zero for t < 0 while the time function
associated with D is zero for t2 0. [rDD + NN ] is now written as the product
of a right-half plane component and a left-half plane component, that is,

[+ D5 +NAI| = (DB +NF)* (r DD+ NR) = AT
where, for example, A gives rise to a stable time function which exists for
t 2 0, Thatis, we insist that the poles be in the left-hand plane.

Now define [/Vf?} zl:ﬁﬁii . N
A A+ A |-

[NE/Z] has been decomposed into a sum in which the first term on the right
is associated with a "positive time" function and the second term is associated
with a "negative time" function. Moreover, because of the definition of A,
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[/V1€/Z\' L. will be a stable positive time function. In making this statement,
one assumes that £ has left-half plane poles. This decomposition can be
achieved using a partial fraction expansion.

One can now set

AN
il

D N
(r DD + NN (r DD + NN )™ 4 (B-11)

and verify that this is truly the optimal control by substituting back into Equa-
tion B-10 to obtain

o= - (# DD + NN)~ N® (B-12)
f}( ) e =  —.-
D (rDD+NN)™ |-

This is a function for which
7(&) = 5{,/‘, [7,(5)]= O fort =0

Equation B-11 is correct even when W(s) has poles and zeros in the
right-half plane and is also correct when W(s) has a time delay if one inter-
prets it properly. That is,

sT N N

N .
W(s) = ;e = Doer —DT (B-13)

(We will avoid the trap of talking about the '"prediction' problem which is
sometimes incorrectly stated as

W(S) = /_\/. asr
since D

2! [W(s)} 40 fr t20).

To illustrate the preceding discussion, consider a simple example for which

-s+1)&3T

Wis)= s(-s+2)

!
aﬂd ﬁ = ? (B-14)

et N = (-5+1) and D= s(—s+Z)eST and use Equation B-11:

. 5(-5+Z)65r S+/
© 0[5t ) (s2a )P | s (csP)-s3ed)+ (52 )] +

_ s(-s+2)e®’ ( 5+1
C S (sz+a,s+b) | s [t (st-as+b) |,
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where

1
b‘—‘ﬁT

and ao [4ret 2
= , 2
v

The only "left-half plane pole" of concern in the partial fraction expansion is
due to the step input. Therefore

3 sCs+2)e’ K
° f?‘-’(shas,cb) S
where .
S+
£ = /r (s*~as+b) | ., =1
) 4 - (s+2)esT (B-15)

o /7(52+as+///7)

If one were to use the "analytic in the left-half plane' requirement
blindly, the result

S+ 2

U, =
Vr (s%eas+b)

4

would be obtained. This does not satisfy the Wiener-Hopf condition.

Substituting Equation B-15 into the Wiener-Hopf equation

[Fe wiw Ju, - BW =4

- z_ - +
5(5) = /7 (s?-as5+b) [ S+t ]— B16)

(s+1)esT Sf?(sz-a,s+b)

gives

-1 -
Thus b4 [@ (s)]=0 for t > 0 because (s+1)é€ ST is, by definition, a tactor of
D and gives rise to a time function which exists only for negative time.

In any situation where there is some doubt as to what to do (for ex-
ample, does one associate e~37 with N or e*57 with D?) the only recourse is

to check the possible alternatives and see whether or not Equation B-9 has
been satisfied.

It may occur that 3 (S) turns out to be a constant (K) which is, of
course, analytic in the entire s plane. In this event, the sufficient condition,
at least in its more general interpretation, breaks down, because
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joeo o0

/ - _
E{wa 4(5) 2, (s) ds _of/}(t)a,(t)dz

-k [st)u@dt = u,,

It is thus necessary to evoke the additional requirement that =0.

(tr-o) = U, (t: @)

The results for the single variable case are easily extended to the
multi-control case (see, for example, Reference 2) when nonminimum phase
components are involved.

The Optimal Control in the Random Variable Case

In the random variable case we again start with the performance index
[o 2]
2\/=/(ez+ rut)dt (B-17)
0

which is also equal to, by Parseval's theorem,

1

Joo
f (eé +ruis)ds

2V =
2 .
-Joo
Joo
! - —
= — {(ﬁ—Wu)(ﬁ—Wu)+f'uL_L}a’s
27
_J'm
Therefore y jo ;
E{2Vj= — * E f R-Wu)(R-Wua)+raa(ds
(2] = 5 £ | {(ewe) (273

Since E { ZV} really means that one must multiply 2V by the multi-dimensional
probability density function associated with all of the unknown system param-
eters, and integrate over the proper domain, the conditions under which one
can interchange the order of integration and the expectation operation reduce
down to the sufficient conditions one considers for inverting orders of inte-
gration in iterated integrals. For example, the formula

be 4 %ob
/ [ / ,(’(t,u)a’lr(w)] dg(2) = f [ f f(t,u)dg(t)] dh(u)
¢ e L%

a

is valid if both sides exist and at least one converges absolutely. That is, at
least one of the integrals
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fT{d,I‘(t,u)“dh(u)q ldg(t)]
ffbI”f,mllde(f)qldh(a)|

is finite.

Thus if we wish to write

Jo0 joo
E _ f(eé+ruti)ds = 1 fE{eE+ ruﬁ}ds
20y J 21§
~J00 -JDO

both sides must exist and either

Jjoo
1 /)ea+rua|dsdP(A)
ZTTJ’

-joo

or joo
r [f|e§+ru5,dP(A)]ds,
21
-J'oo ﬁ

where P(A) represents the multi-dimensional cumulative probability function
for the unknown parameters (described by the vector A), must exist (i.e.,
be less than infinity).

The writers know of only one practical case for which this condition
is not satisfied. If the input to a system is such that a finite following error
must result, then Equation B-17 is infinite (e.g., a ramp input into a type one
system). However, even in this case it can be shown that the integrand of the
performance index has a minimum steady state value. This point is discussed
at some length in Section 6 of Reference 2.

We now assume that the sufficient conditions have been satisfied and
write
J 00

E{zjz_’/ E{(E-Wu)(é-\?/ﬁhfw&}ds (B-18)

27j S

Assuming that ® is deterministic and that the control which minimizes
the expected value of the performance index is to be found, one obtains
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E fovf = EerJ /jYQﬁ-EE{W}E—ﬁE{W}u+ E[WW}WWW} ds

~jof)

Again, let « = «, * 14, , substitute and clear through to obtain the
optimal condition

[rrelww]]e,- vE[W] - 4,0 (B-19)

where o(\f-/[%(s)] = ?(ﬁ) =0 fort =0

It is easy to see that interchanging the expectation and integration op-
eration will give the same answers as were obtained in the deterministic case
with WW replaced by E {WW }, etc. Thus the optimal error condition becomes

1 !
E {—_} e ~rE{———_} = (B-20)
|:/+ r ww } ° W G2 (s)
and the optimal output condition becomes

[an {#w}}'go_ﬁz?J (s) (B-21)

Notice that the basic philosophy emphasized in this very straight-
forward and simple derivation is that W is fixed for any given system but
not precisely known. We then subjectively decided to take the usual per-
formance index and find its expected value. It is only fair to point out that
this idea would lead to trivial results for the case where the system was
deterministic but the input was a random variable for then

oo

E o/(e“rw"')dz‘ (B-22)
would give the result that &, = 0 when R has a zero mean. In this situa-
tion, a different philosophy is adopted which uses the performance index

J =e?+rrut

and asks that one find the minimum of a time average. That is,

E{n}= Ef?fT(e%er)dt.
-T

When this problem is explored, one finds that the reasonable physi-
cal entity to minimize is the system impulse response [Fo ()] . The vari-
ous manipulations are then carried through completely in the time domain
and yield the time Wiener-Hopf equation (see, for example, Reference 1).
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o0
/FTO (Zz)[(bﬂe (fz]' - TZ)+r¢E,B, (,Z;—le)]dz‘z_ ¢RR (’[1) =0 (B"23)
0
T >0
where for T,
@oe = autocorrelation function of the input
QSE,R, = autocorrelation function of the input to the fixed
elements of the system
F,(2,) = the system impulse response which minimizes

the E{J}.

Transforming into the frequency domain one obtains the frequency do-
main Wiener -Hopf equation

[7""’\/77‘51 @EB(S)F;(S)_(DQQ(S):?' (B-24)

where

L' [309)]

Ofort>0

¢g2(s) = the power spectral density of the input signal

F,(s)

the optimal transfer function.
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